Lustre* Software Release 2.x
Table of Contents
	Preface
		1. About this Document
		1.1. UNIX* Commands
	1.2. Shell Prompts
	1.3. Related Documentation
	1.4. Documentation and Support

	2. Revisions

	I. Introducing the Lustre* File System
		1. Understanding Lustre
 Architecture
		1.1.
 What a Lustre File System Is (and What It Isn't)
		1.1.1.
 Lustre Features

	1.2.
 Lustre Components
		1.2.1.
 Management Server (MGS)
	1.2.2. Lustre File System Components
	1.2.3.
 Lustre Networking (LNet)
	1.2.4.
 Lustre Cluster

	1.3.

 Lustre File System Storage and I/O
		1.3.1.

 Lustre File System and Striping

	2. Understanding Lustre Networking (LNet)
		2.1. Introducing LNet
	2.2. Key Features of LNet
	2.3. Lustre Networks
	2.4. Supported Network Types

	3. Understanding Failover in a
 Lustre File System
		3.1.
 What is Failover?
		3.1.1.
 Failover Capabilities
	3.1.2.
 Types of Failover Configurations

	3.2.
 Failover Functionality in a Lustre File System
		3.2.1.
 MDT Failover Configuration (Active/Passive)
	3.2.2.
 MDT Failover Configuration (Active/Active)L 2.4
	3.2.3.
 OST Failover Configuration (Active/Active)

	II. Installing and Configuring Lustre
		4. Installation Overview
		4.1.
 Steps to Installing the Lustre Software

	5. Determining Hardware Configuration Requirements and
 Formatting Options
		5.1.

 Hardware Considerations
		5.1.1. MGT and MDT Storage Hardware Considerations
	5.1.2. OST Storage Hardware Considerations

	5.2.

 Determining Space Requirements
		5.2.1.
 Determining MGT Space Requirements
	5.2.2.
 Determining MDT Space Requirements
	5.2.3.
 Determining OST Space Requirements

	5.3.

 Setting ldiskfs File System Formatting Options

		5.3.1. Setting Formatting Options for an ldiskfs MDT
	5.3.2. Setting Formatting Options for an ldiskfs OST

	5.4. File and File System Limits
	5.5. Determining Memory Requirements
		5.5.1.

 Client Memory Requirements
	5.5.2. MDS Memory Requirements
	5.5.3. OSS Memory Requirements

	5.6. Implementing Networks To Be Used by the Lustre File System

	6. Configuring Storage on a Lustre File System
		6.1.

 Selecting Storage for the MDT and OSTs
		6.1.1. Metadata Target (MDT)
	6.1.2. Object Storage Server (OST)

	6.2. Reliability Best Practices
	6.3. Performance Tradeoffs
	6.4.
 Formatting Options for ldiskfs RAID Devices
		6.4.1. Computing file system parameters for mkfs
	6.4.2. Choosing Parameters for an External Journal

	6.5. Connecting a SAN to a Lustre File System

	7. Setting Up Network Interface Bonding
		7.1. Network Interface Bonding Overview
	7.2. Requirements
	7.3. Bonding Module Parameters
	7.4. Setting Up Bonding
		7.4.1. Examples

	7.5. Configuring a Lustre File System with Bonding
	7.6. Bonding References

	8. Installing the Lustre Software
		8.1.
 Preparing to Install the Lustre Software
		8.1.1. Software Requirements
	8.1.2. Environmental Requirements

	8.2. Lustre Software Installation Procedure

	9. Configuring Lustre Networking (LNet)
		9.1. Configuring LNet via lnetctlL 2.7
		9.1.1. Configuring LNet
	9.1.2. Displaying Global Settings
	9.1.3. Adding, Deleting and Showing
 Networks
	9.1.4. Manual Adding, Deleting and Showing PeersL 2.10
	9.1.5. Dynamic Peer DiscoveryL 2.11
	9.1.6. Adding, Deleting and Showing routes
	9.1.7. Enabling and Disabling Routing
	9.1.8. Showing routing information
	9.1.9. Configuring Routing Buffers
	9.1.10. Asymmetrical RoutesL 2.13
	9.1.11. Importing YAML Configuration File
	9.1.12. Exporting Configuration in YAML format
	9.1.13. Showing LNet Traffic Statistics
	9.1.14. YAML Syntax

	9.2.
 Overview of LNet Module Parameters
		9.2.1. Using a Lustre Network Identifier (NID)
 to Identify a Node

	9.3. Setting the LNet Module networks Parameter
		9.3.1. Multihome Server Example

	9.4. Setting the LNet Module ip2nets Parameter
	9.5. Setting the LNet Module routes
 Parameter
		9.5.1. Routing Example

	9.6. Testing the LNet
 Configuration
	9.7. Configuring the Router Checker
	9.8. Best Practices for LNet Options
		9.8.1. Escaping commas with quotes
	9.8.2. Including comments

	10. Configuring a Lustre File
 System
		10.1.
 Configuring a Simple Lustre File System
		10.1.1.
 Simple Lustre Configuration Example

	10.2.
 Additional Configuration Options
		10.2.1.
 Scaling the Lustre File System
	10.2.2.
 Changing Striping Defaults
	10.2.3.
 Using the Lustre Configuration Utilities

	11. Configuring Failover in a Lustre File System
		11.1. Setting Up a Failover Environment
		11.1.1. Selecting Power Equipment
	11.1.2. Selecting Power Management Software
	11.1.3. Selecting High-Availability (HA) Software

	11.2. Preparing a Lustre File System for Failover
	11.3. Administering Failover in a Lustre File System

	III. Administering Lustre
		12. Monitoring a Lustre File System
		12.1.

Lustre Changelogs
		12.1.1.
Working with Changelogs
	12.1.2. Changelog Examples
	12.1.3.
Audit with ChangelogsL 2.11

	12.2.

Lustre Jobstats
		12.2.1.
 How Jobstats Works
	12.2.2.
Enable/Disable Jobstats
	12.2.3.
Check Job Stats
	12.2.4.
Clear Job Stats
	12.2.5.
Configure Auto-cleanup Interval

	12.3. Lustre Monitoring Tool (LMT)
	12.4.
 CollectL

	12.5.
Other Monitoring Options

	13. Lustre Operations
		13.1.

 Mounting by Label
	13.2.
 Starting Lustre
	13.3.
 Mounting a Server
	13.4.
 Stopping the Filesystem
	13.5.
 Unmounting a Specific Target on a Server
	13.6.
 Specifying Failout/Failover Mode for OSTs
	13.7.
 Handling Degraded OST RAID Arrays
	13.8.
 Running Multiple Lustre File Systems
	13.9.
 Creating a sub-directory on a given MDTL 2.4
	13.10.

 Creating a directory striped across multiple MDTsL 2.8
	13.11.
 Setting and Retrieving Lustre Parameters
		13.11.1. Setting Tunable Parameters with
 mkfs.lustre
	13.11.2. Setting Parameters with
 tunefs.lustre
	13.11.3. Setting Parameters with
 lctl

	13.12.
 Specifying NIDs and Failover
	13.13.
 Erasing a File System
	13.14.
 Reclaiming Reserved Disk Space
	13.15.
 Replacing an Existing OST or MDT
	13.16.
 Identifying To Which Lustre File an OST Object Belongs

	14. Lustre Maintenance
		14.1.

 Working with Inactive OSTs
	14.2.
Finding Nodes in the Lustre File System
	14.3.
Mounting a Server Without Lustre Service
	14.4.
Regenerating Lustre Configuration Logs
	14.5.
Changing a Server NID
	14.6. Clearing configurationL 2.11
	14.7. Adding a New MDT to a Lustre File SystemL 2.4
	14.8.
Adding a New OST to a Lustre File System
	14.9.

Removing and Restoring MDTs and OSTs
		14.9.1. Removing an MDT from the File SystemL 2.4
	14.9.2.

 Working with Inactive MDTsL 2.4
	14.9.3. Removing an OST from the File System
	14.9.4.
 Backing Up OST Configuration Files
	14.9.5.
 Restoring OST Configuration Files
	14.9.6. Returning a Deactivated OST to Service

	14.10.

Aborting Recovery
	14.11.
Determining Which Machine is Serving an OST
	14.12.
Changing the Address of a Failover Node
	14.13.
 Separate a combined MGS/MDT

	15. Managing Lustre Networking (LNet)
		15.1.
 Updating the Health Status of a Peer or Router
	15.2. Starting and Stopping LNet
		15.2.1. Starting LNet
	15.2.2. Stopping LNet

	15.3. Hardware Based Multi-Rail
 Configurations with LNet
	15.4. Load Balancing with an InfiniBand* Network
		15.4.1. Setting Up lustre.conf for Load Balancing

	15.5. Dynamically Configuring
 LNet RoutesL 2.4
		15.5.1.
 lustre_routes_config
	15.5.2. lustre_routes_conversion
	15.5.3. Route Configuration Examples

	16. LNet Software Multi-RailL 2.10
		16.1. Multi-Rail Overview
	16.2. Configuring Multi-Rail
		16.2.1. Configure Multiple Interfaces on the Local Node
	16.2.2. Deleting Network Interfaces
	16.2.3. Adding Remote Peers that are Multi-Rail Capable
	16.2.4. Deleting Remote Peers

	16.3. Notes on routing with Multi-Rail
		16.3.1. Multi-Rail Cluster Example
	16.3.2. Utilizing Router Resiliency
	16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster

	16.4. LNet HealthL 2.12
		16.4.1. Health Value
	16.4.2. Failure Types and Behavior
	16.4.3. User Interface
	16.4.4. Displaying Information
	16.4.5. Initial Settings Recommendations

	17. Upgrading a Lustre File System
		17.1.

 Release Interoperability and Upgrade Requirements
	17.2.

 Upgrading to Lustre Software Release 2.x (Major
 Release)
	17.3.
 Upgrading to Lustre Software Release 2.x.y (Minor
 Release)

	18. Backing Up and Restoring a File
 System
		18.1.

 Backing up a File System
		18.1.1.
 Lustre_rsync

	18.2.
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)
	18.3.

 Backing Up an OST or MDT (Backend File System Level)
		18.3.1.
 Backing Up an OST or MDT (Backend File System Level)L 2.11
	18.3.2.
 Backing Up an OST or MDT

	18.4.
 Restoring a File-Level Backup
	18.5.
 Using LVM Snapshots with the Lustre File System
		18.5.1.
 Creating an LVM-based Backup File System
	18.5.2.
 Backing up New/Changed Files to the Backup File
 System
	18.5.3.
 Creating Snapshot Volumes
	18.5.4.
 Restoring the File System From a Snapshot
	18.5.5.
 Deleting Old Snapshots
	18.5.6.
 Changing Snapshot Volume Size

	18.6.
 Migration Between ZFS and ldiskfs Target Filesystems
 L 2.11
		18.6.1.
 Migrate from a ZFS to an ldiskfs based filesystem
	18.6.2.
 Migrate from an ldiskfs to a ZFS based filesystem

	19. Managing File Layout (Striping) and Free
 Space
		19.1.

 How Lustre File System Striping Works
	19.2.
 Lustre File Layout (Striping) Considerations
		19.2.1.
 Choosing a Stripe Size

	19.3. Setting the File Layout/Striping Configuration (lfs
 setstripe)
		19.3.1. Specifying a File Layout (Striping Pattern) for a Single File
	19.3.2. Setting the Striping Layout for a Directory
	19.3.3. Setting the Striping Layout for a File System
	19.3.4. Creating a File on a Specific OST

	19.4. Retrieving File Layout/Striping Information (getstripe)
		19.4.1. Displaying the Current Stripe Size
	19.4.2. Inspecting the File Tree
	19.4.3. Locating the MDT for a remote directory

	19.5. Progressive File Layout(PFL)L 2.10
		19.5.1. lfs setstripe
	19.5.2. lfs migrate
	19.5.3. lfs getstripe
	19.5.4. lfs find

	19.6. Managing Free Space
		19.6.1. Checking File System Free Space
	19.6.2. Stripe Allocation Methods
	19.6.3. Adjusting the Weighting Between Free Space and Location

	19.7. Lustre Striping Internals

	20. Data on MDT (DoM)L 2.11
		20.1.

 Introduction to Data on MDT (DoM)
	20.2.

 User Commands
		20.2.1.
 lfs setstripe for DoM files
	20.2.2. Setting a default DoM layout to an existing directory

	20.2.3.

 DoM Stripe Size Restrictions
	20.2.4.

 lfs getstripe for DoM files
	20.2.5.

 lfs find for DoM files
	20.2.6.

 The dom_stripesize parameter
	20.2.7.

 Disable DoM

	21. Lazy Size on MDT (LSoM)L 2.12
		21.1.
 Introduction to Lazy Size on MDT (LSoM)
	21.2. Enable LSoM
	21.3. User Commands
		21.3.1. lfs getsom for LSoM data

	21.3.2. Syncing LSoM data

	22. File Level Redundancy (FLR)L 2.11
		22.1. Introduction
	22.2. Operations
		22.2.1. Creating a Mirrored File or Directory
	22.2.2. Extending a Mirrored File
	22.2.3. Splitting a Mirrored File
	22.2.4. Resynchronizing out-of-sync Mirrored File(s)
	22.2.5. Verifying Mirrored File(s)
	22.2.6. Finding Mirrored File(s)

	22.3. Interoperability

	23. Managing the File System and
 I/O
		23.1.

 Handling Full OSTs
		23.1.1.
 Checking OST Space Usage
	23.1.2.
 Disabling creates on a Full OST
	23.1.3.

 Migrating Data within a File System
	23.1.4.

 Returning an Inactive OST Back Online
	23.1.5. Migrating Metadata within a Filesystem

	23.2.

 Creating and Managing OST Pools
		23.2.1. Working with OST Pools
	23.2.2.
 Tips for Using OST Pools

	23.3.
 Adding an OST to a Lustre File System
	23.4.
 Performing Direct I/O
		23.4.1. Making File System Objects Immutable

	23.5. Other I/O Options
		23.5.1. Lustre Checksums
	23.5.2. Ptlrpc Thread Pool

	24. Lustre File System Failover and Multiple-Mount Protection
		24.1.
 Overview of Multiple-Mount Protection
	24.2. Working with Multiple-Mount Protection

	25. Configuring and Managing
 Quotas
		25.1.
 Working with Quotas
	25.2.
 Enabling Disk Quotas
		25.2.1. Enabling Disk Quotas (Lustre Software Release 2.4 and
 later)L 2.4

	25.3.
 Quota Administration
	25.4.
 Quota Allocation
	25.5.
 Quotas and Version Interoperability
	25.6.
 Granted Cache and Quota Limits
	25.7.
 Lustre Quota Statistics
		25.7.1. Interpreting Quota Statistics

	26. Hierarchical Storage Management (HSM)L 2.5
		26.1.
 Introduction
	26.2.
 Setup
		26.2.1.
 Requirements
		
	26.2.2.
 Coordinator
		
	26.2.3.
 Agents
		

	26.3.
 Agents and copytool
		26.3.1.
 Archive ID, multiple backends
		
	26.3.2.
 Registered agents
		
	26.3.3.
 Timeout
		

	26.4.
 Requests
		
		26.4.1.
 Commands
		
	26.4.2.
 Automatic restore
		
	26.4.3.
 Request monitoring
		

	26.5.
 File states
		
	26.6.
 Tuning
		
		26.6.1.
 hsm_controlpolicy
		
	26.6.2.
 max_requests
		
	26.6.3.
 policy
		
	26.6.4.
 grace_delay
		

	26.7.
 change logs
		
	26.8.
 Policy engine
		
		26.8.1.
 Robinhood
		

	27. Mapping UIDs and GIDs with
 NodemapL 2.9
		27.1. Setting a Mapping
		27.1.1. Defining Terms
	27.1.2. Deciding on NID Ranges
	27.1.3. Describing and Deploying a Sample Mapping

	27.2. Altering Properties
		27.2.1. Managing the Properties
	27.2.2. Mixing Properties

	27.3. Enabling the Feature
	27.4. default Nodemap
	27.5. Verifying Settings
	27.6. Ensuring Consistency

	28. Configuring Shared-Secret Key
 (SSK) SecurityL 2.9
		28.1. SSK Security Overview
		28.1.1. Key features

	28.2. SSK Security Flavors
		28.2.1. Secure RPC Rules

	28.3. SSK Key Files
		28.3.1. Key File Management

	28.4. Lustre GSS Keyring
		28.4.1. Setup
	28.4.2. Server Setup
	28.4.3. Debugging GSS Keyring
	28.4.4. Revoking Keys

	28.5. Role of Nodemap in SSK
	28.6. SSK Examples
		28.6.1. Securing Client to Server Communications
	28.6.2. Securing MGS Communications
	28.6.3. Securing Server to Server Communications

	28.7. Viewing Secure PtlRPC Contexts

	29. Managing Security in a Lustre File System
		29.1.
 Using ACLs
		29.1.1. How ACLs Work
	29.1.2. Using ACLs with the Lustre Software
	29.1.3. Examples

	29.2. Using Root Squash
		29.2.1. Configuring Root Squash
	29.2.2. Enabling and Tuning Root Squash
	29.2.3. Tips on Using Root Squash

	29.3.
 Isolating Clients to a Sub-directory Tree
		29.3.1. Identifying Clients
	29.3.2. Configuring Isolation
	29.3.3. Making Isolation Permanent

	29.4.
 Checking SELinux Policy Enforced by Lustre ClientsL 2.13
		29.4.1. Determining SELinux Policy Info

	29.4.2. Enforcing SELinux Policy Check
	29.4.3. Making SELinux Policy Check
	Permanent
	29.4.4. Sending SELinux Status Info from
	Clients

	30. Lustre ZFS Snapshots
		30.1. Introduction
		30.1.1. Requirements

	30.2. Configuration

	30.3. Snapshot Operations
		30.3.1. Creating a Snapshot

	30.3.2. Delete a Snapshot

	30.3.3. Mounting a Snapshot

	30.3.4. Unmounting a Snapshot

	30.3.5. List Snapshots

	30.3.6. Modify Snapshot Attributes

	30.4. Global Write Barriers
		30.4.1. Impose Barrier

	30.4.2. Remove Barrier

	30.4.3. Query Barrier

	30.4.4. Rescan Barrier

	30.5. Snapshot Logs
	30.6. Lustre Configuration Logs

	IV. Tuning a Lustre File System for Performance
		31. Testing Lustre Network Performance (LNet Self-Test)
		31.1.
LNet Self-Test Overview
		31.1.1. Prerequisites

	31.2. Using LNet Self-Test
		31.2.1. Creating a Session
	31.2.2. Setting Up Groups
	31.2.3. Defining and Running the Tests
	31.2.4. Sample Script

	31.3. LNet Self-Test Command Reference
		31.3.1. Session Commands
	31.3.2. Group Commands
	31.3.3. Batch and Test Commands
	31.3.4. Other Commands

	32. Benchmarking Lustre File System Performance (Lustre I/O
 Kit)
		32.1.

 Using Lustre I/O Kit Tools
		32.1.1. Contents of the Lustre I/O Kit
	32.1.2. Preparing to Use the Lustre I/O Kit

	32.2. Testing I/O Performance of Raw Hardware (sgpdd-survey)
		32.2.1. Tuning Linux Storage Devices
	32.2.2. Running sgpdd-survey

	32.3. Testing OST Performance (obdfilter-survey)
		32.3.1. Testing Local Disk Performance
	32.3.2. Testing Network Performance
	32.3.3. Testing Remote Disk Performance
	32.3.4. Output Files

	32.4. Testing OST I/O Performance (ost-survey)
	32.5. Testing MDS Performance (mds-survey)
		32.5.1. Output Files
	32.5.2. Script Output

	32.6. Collecting Application Profiling Information (stats-collect)
		32.6.1. Using stats-collect

	33. Tuning a Lustre File System
		33.1.

 Optimizing the Number of Service Threads
		33.1.1.
 Specifying the OSS Service Thread Count
	33.1.2.
 Specifying the MDS Service Thread Count

	33.2.
 Binding MDS Service Thread to CPU Partitions
	33.3.

 Tuning LNet Parameters
		33.3.1. Transmit and Receive Buffer Size
	33.3.2. Hardware Interrupts (
 enable_irq_affinity)
	33.3.3.
 Binding Network Interface Against CPU Partitions
	33.3.4.
 Network Interface Credits
	33.3.5.
 Router Buffers
	33.3.6.
 Portal Round-Robin
	33.3.7. LNet Peer Health

	33.4.
 libcfs Tuning
		33.4.1. CPU Partition String Patterns

	33.5.
 LND Tuning
		33.5.1. ko2iblnd Tuning

	33.6.
 Network Request Scheduler (NRS) TuningL 2.4
		33.6.1.
 First In, First Out (FIFO) policy
	33.6.2.
 Client Round-Robin over NIDs (CRR-N) policy
	33.6.3.
 Object-based Round-Robin (ORR) policy
	33.6.4.
 Target-based Round-Robin (TRR) policy
	33.6.5.
 Token Bucket Filter (TBF) policyL 2.6
	33.6.6.
 Delay policyL 2.10

	33.7.
 Lockless I/O Tunables
	33.8.

 Server-Side Advice and Hinting
 L 2.9
		33.8.1. Overview
	33.8.2. Examples

	33.9.

 Large Bulk IO (16MB RPC)
 L 2.9
		33.9.1. Overview
	33.9.2. Usage

	33.10.
 Improving Lustre I/O Performance for Small Files
	33.11.
 Understanding Why Write Performance is Better Than Read
 Performance

	V. Troubleshooting a Lustre File System
		34. Lustre File System Troubleshooting
		34.1.

 Lustre Error Messages
		34.1.1. Error Numbers
	34.1.2. Viewing Error Messages

	34.2. Reporting a Lustre File System Bug
		34.2.1. Searching Jira*for Duplicate Tickets

	34.3. Common Lustre File System Problems
		34.3.1. OST Object is Missing or Damaged
	34.3.2. OSTs Become Read-Only
	34.3.3. Identifying a Missing OST
	34.3.4. Fixing a Bad LAST_ID on an OST
	34.3.5. Handling/Debugging "Bind: Address already in use" Error
	34.3.6. Handling/Debugging Error "- 28"
	34.3.7. Triggering Watchdog for PID NNN
	34.3.8. Handling Timeouts on Initial Lustre File System Setup
	34.3.9. Handling/Debugging "LustreError: xxx went back in time"
	34.3.10. Lustre Error: "Slow Start_Page_Write"
	34.3.11. Drawbacks in Doing Multi-client O_APPEND Writes
	34.3.12. Slowdown Occurs During Lustre File System Startup
	34.3.13. Log Message 'Out of Memory' on OST
	34.3.14. Setting SCSI I/O Sizes

	35. Troubleshooting
 Recovery
		35.1.
 Recovering from Errors or Corruption on a Backing ldiskfs File
 System
	35.2.
 Recovering from Corruption in the Lustre File System
		35.2.1.
 Working with Orphaned Objects

	35.3.
 Recovering from an Unavailable OST
	35.4.

 Checking the file system with LFSCK
		35.4.1. LFSCK switch interface
	35.4.2. Check the LFSCK global status
	35.4.3. LFSCK status interface
	35.4.4. LFSCK adjustment interface

	36. Debugging a Lustre File System
		36.1.
Diagnostic and Debugging Tools
		36.1.1. Lustre Debugging Tools
	36.1.2. External Debugging Tools

	36.2. Lustre Debugging Procedures
		36.2.1. Understanding the Lustre Debug Messaging Format
	36.2.2. Using the lctl Tool to View Debug Messages
	36.2.3. Dumping the Buffer to a File (debug_daemon)
	36.2.4. Controlling Information Written to the Kernel Debug Log
	36.2.5. Troubleshooting with strace
	36.2.6. Looking at Disk Content
	36.2.7. Finding the Lustre UUID of an OST
	36.2.8. Printing Debug Messages to the Console
	36.2.9. Tracing Lock Traffic
	36.2.10. Controlling Console Message Rate Limiting

	36.3. Lustre Debugging for Developers
		36.3.1. Adding Debugging to the Lustre Source Code
	36.3.2. Accessing the ptlrpc Request History
	36.3.3. Finding Memory Leaks Using leak_finder.pl

	VI. Reference
		37. Lustre File System Recovery
		37.1.

 Recovery Overview
		37.1.1. Client Failure
	37.1.2. Client Eviction
	37.1.3. MDS Failure (Failover)
	37.1.4. OST Failure (Failover)
	37.1.5. Network Partition
	37.1.6. Failed Recovery

	37.2. Metadata Replay
		37.2.1. XID Numbers
	37.2.2. Transaction Numbers
	37.2.3. Replay and Resend
	37.2.4. Client Replay List
	37.2.5. Server Recovery
	37.2.6. Request Replay
	37.2.7. Gaps in the Replay Sequence
	37.2.8. Lock Recovery
	37.2.9. Request Resend

	37.3. Reply Reconstruction
		37.3.1. Required State
	37.3.2. Reconstruction of Open Replies
	37.3.3. Multiple Reply Data per ClientL 2.8

	37.4. Version-based Recovery
		37.4.1. VBR Messages
	37.4.2. Tips for Using VBR

	37.5. Commit on Share
		37.5.1. Working with Commit on Share
	37.5.2. Tuning Commit On Share

	37.6. Imperative Recovery
		37.6.1. MGS role
	37.6.2. Tuning Imperative Recovery
	37.6.3. Configuration Suggestions for Imperative Recovery

	37.7. Suppressing Pings
		37.7.1. "suppress_pings" Kernel Module Parameter
	37.7.2. Client Death Notification

	38. Lustre Parameters
		38.1. Introduction to Lustre Parameters
		38.1.1. Identifying Lustre File Systems and Servers

	38.2. Tuning Multi-Block Allocation (mballoc)
	38.3. Monitoring Lustre File System I/O
		38.3.1. Monitoring the Client RPC Stream
	38.3.2. Monitoring Client Activity
	38.3.3. Monitoring Client Read-Write Offset Statistics
	38.3.4. Monitoring Client Read-Write Extent Statistics
	38.3.5. Monitoring the OST Block I/O Stream

	38.4. Tuning Lustre File System I/O
		38.4.1. Tuning the Client I/O RPC Stream
	38.4.2. Tuning File Readahead and Directory Statahead
	38.4.3. Tuning OSS Read Cache
	38.4.4. Enabling OSS Asynchronous Journal Commit
	38.4.5.

 Tuning the Client Metadata RPC Stream
 L 2.8

	38.5. Configuring Timeouts in a Lustre File System
		38.5.1. Configuring Adaptive Timeouts
	38.5.2. Setting Static Timeouts

	38.6. Monitoring LNet
	38.7. Allocating Free Space on OSTs
	38.8. Configuring Locking
	38.9. Setting MDS and OSS Thread Counts
	38.10. Enabling and Interpreting Debugging Logs
		38.10.1. Interpreting OST Statistics
	38.10.2. Interpreting MDT Statistics

	39. User Utilities
		39.1.

 lfs

		39.1.1. Synopsis
	39.1.2. Description
	39.1.3. Options
	39.1.4. Examples
	39.1.5. See Also

	39.2.

 lfs_migrate

		39.2.1. Synopsis
	39.2.2. Description
	39.2.3. Options
	39.2.4. Examples
	39.2.5. See Also

	39.3.

 filefrag

		39.3.1. Synopsis
	39.3.2. Description
	39.3.3. Options
	39.3.4. Examples

	39.4.

 mount

	39.5. Handling Timeouts

	40. Programming Interfaces
		40.1. User/Group Upcall
		40.1.1. Synopsis
	40.1.2. Description
	40.1.3. Data Structures

	41. Setting Lustre Properties in a C Program (llapi)
		41.1.
 llapi_file_create

		41.1.1. Synopsis
	41.1.2. Description
	41.1.3. Examples

	41.2. llapi_file_get_stripe
		41.2.1. Synopsis
	41.2.2. Description
	41.2.3. Return Values
	41.2.4. Errors
	41.2.5. Examples

	41.3.
 llapi_file_open

		41.3.1. Synopsis
	41.3.2. Description
	41.3.3. Return Values
	41.3.4. Errors
	41.3.5. Example

	41.4.
 llapi_quotactl

		41.4.1. Synopsis
	41.4.2. Description
	41.4.3. Return Values
	41.4.4. Errors

	41.5.
 llapi_path2fid

		41.5.1. Synopsis
	41.5.2. Description
	41.5.3. Return Values

	41.6.
 llapi_ladvise
 L 2.9
		41.6.1. Synopsis
	41.6.2. Description
	41.6.3. Return Values
	41.6.4. Errors

	41.7. Example Using the llapi Library
		41.7.1. See Also

	42. Configuration Files and Module Parameters
		42.1.

 Introduction
	42.2.

 Module Options
		42.2.1.
LNet Options
	42.2.2.
 SOCKLND Kernel TCP/IP LND

	43. System Configuration Utilities
		43.1.
 e2scan
		43.1.1. Synopsis
	43.1.2. Description
	43.1.3. Options

	43.2.
l_getidentity
		43.2.1. Synopsis
	43.2.2. Description
	43.2.3. Options
	43.2.4. Files

	43.3.
lctl
		43.3.1. Synopsis
	43.3.2. Description
	43.3.3. Setting Parameters with lctl
	43.3.4. Options
	43.3.5. Examples
	43.3.6. See Also

	43.4.
ll_decode_filter_fid
		43.4.1. Synopsis
	43.4.2. Description
	43.4.3. Examples
	43.4.4. See Also

	43.5.
ll_recover_lost_found_objsL 2.8
		43.5.1. Synopsis
	43.5.2. Description
	43.5.3. Options
	43.5.4. Example

	43.6.
llobdstat
		43.6.1. Synopsis
	43.6.2. Description
	43.6.3. Example
	43.6.4. Files

	43.7.
llog_reader
		43.7.1. Synopsis
	43.7.2. Description
	43.7.3. See Also

	43.8.
llstat
		43.8.1. Synopsis
	43.8.2. Description
	43.8.3. Options
	43.8.4. Example
	43.8.5. Files

	43.9.
llverdev
		43.9.1. Synopsis
	43.9.2. Description
	43.9.3. Options
	43.9.4. Examples

	43.10.
lshowmount
		43.10.1. Synopsis
	43.10.2. Description
	43.10.3. Options
	43.10.4. Files

	43.11.
lst
		43.11.1. Synopsis
	43.11.2. Description
	43.11.3. Modules
	43.11.4. Utilities
	43.11.5. Example Script

	43.12.
lustre_rmmod.sh
	43.13.
lustre_rsync
		43.13.1. Synopsis
	43.13.2. Description
	43.13.3. Options
	43.13.4. Examples
	43.13.5. See Also

	43.14.
mkfs.lustre
		43.14.1. Synopsis
	43.14.2. Description
	43.14.3. Examples
	43.14.4. See Also

	43.15.
mount.lustre
		43.15.1. Synopsis
	43.15.2. Description
	43.15.3. Options
	43.15.4. Examples
	43.15.5. See Also

	43.16.
plot-llstat
		43.16.1. Synopsis
	43.16.2. Description
	43.16.3. Options
	43.16.4. Example

	43.17.
routerstat
		43.17.1. Synopsis
	43.17.2. Description
	43.17.3. Output
	43.17.4. Example
	43.17.5. Files

	43.18.
tunefs.lustre
		43.18.1. Synopsis
	43.18.2. Description
	43.18.3. Options
	43.18.4. Examples
	43.18.5. See Also

	43.19.
Additional System Configuration Utilities
		43.19.1.
Application Profiling Utilities
	43.19.2. More /proc Statistics for Application Profiling
	43.19.3.

Testing / Debugging Utilities
	43.19.4. Fileset FeatureL 2.9

	44. LNet Configuration C-API
		44.1. General API Information
		44.1.1. API Return Code
	44.1.2. API Common Input Parameters
	44.1.3. API Common Output Parameters

	44.2. The LNet Configuration C-API
		44.2.1. Configuring LNet
	44.2.2. Enabling and Disabling Routing
	44.2.3. Adding Routes
	44.2.4. Deleting Routes
	44.2.5. Showing Routes
	44.2.6. Adding a Network Interface
	44.2.7. Deleting a Network Interface
	44.2.8. Showing Network Interfaces
	44.2.9. Adjusting Router Buffer Pools
	44.2.10. Showing Routing information
	44.2.11. Showing LNet Traffic Statistics
	44.2.12. Adding/Deleting/Showing Parameters through a YAML Block
	44.2.13. Adding a route code example

	Glossary
	Index

Chapter 1. Understanding Lustre
 Architecture

This chapter describes the Lustre architecture and features of the
 Lustre file system. It includes the following sections:
	
 Section 1.1, “
 What a Lustre File System Is (and What It Isn't)”

	
 Section 1.2, “
 Lustre Components”

	
 Section 1.3, “

 Lustre File System Storage and I/O”

1.1.
 What a Lustre File System Is (and What It Isn't)

The Lustre architecture is a storage architecture for clusters. The
 central component of the Lustre architecture is the Lustre file system,
 which is supported on the Linux operating system and provides a POSIX
 *standard-compliant UNIX file system
 interface.
The Lustre storage architecture is used for many different kinds of
 clusters. It is best known for powering many of the largest
 high-performance computing (HPC) clusters worldwide, with tens of thousands
 of client systems, petabytes (PiB) of storage and hundreds of gigabytes per
 second (GB/sec) of I/O throughput. Many HPC sites use a Lustre file system
 as a site-wide global file system, serving dozens of clusters.
The ability of a Lustre file system to scale capacity and performance
 for any need reduces the need to deploy many separate file systems, such as
 one for each compute cluster. Storage management is simplified by avoiding
 the need to copy data between compute clusters. In addition to aggregating
 storage capacity of many servers, the I/O throughput is also aggregated and
 scales with additional servers. Moreover, throughput and/or capacity can be
 easily increased by adding servers dynamically.
While a Lustre file system can function in many work environments, it
 is not necessarily the best choice for all applications. It is best suited
 for uses that exceed the capacity that a single server can provide, though
 in some use cases, a Lustre file system can perform better with a single
 server than other file systems due to its strong locking and data
 coherency.
A Lustre file system is currently not particularly well suited for
 "peer-to-peer" usage models where clients and servers are running on the
 same node, each sharing a small amount of storage, due to the lack of data
 replication at the Lustre software level. In such uses, if one
 client/server fails, then the data stored on that node will not be
 accessible until the node is restarted.
1.1.1.
 Lustre Features

Lustre file systems run on a variety of vendor's kernels. For more
 details, see the Lustre Test Matrix
 Section 8.1, “
 Preparing to Install the Lustre Software”.
A Lustre installation can be scaled up or down with respect to the
 number of client nodes, disk storage and bandwidth. Scalability and
 performance are dependent on available disk and network bandwidth and the
 processing power of the servers in the system. A Lustre file system can
 be deployed in a wide variety of configurations that can be scaled well
 beyond the size and performance observed in production systems to
 date.

 Table 1.1, “Lustre File System Scalability and Performance” shows some of the
 scalability and performance characteristics of a Lustre file system.
 For a full list of Lustre file and filesystem limits see
 Table 5.2, “File and file system limits”.
Table 1.1. Lustre File System Scalability and Performance
	

 Feature

 	

 Current Practical Range

 	

 Known Production Usage

	

 Client Scalability

 	
 100-100000

 	
 50000+ clients, many in the 10000 to 20000 range

	

 Client Performance

 	

 Single client:

 I/O 90% of network bandwidth

 Aggregate:

 10 TB/sec I/O

 	

 Single client:

 4.5 GB/sec I/O (FDR IB, OPA1),
		1000 metadata ops/sec

 Aggregate:

 2.5 TB/sec I/O

	

 OSS Scalability

 	

 Single OSS:

 1-32 OSTs per OSS

 Single OST:

 300M objects, 256TiB per OST (ldiskfs)

 500M objects, 256TiB per OST (ZFS)

 OSS count:

 1000 OSSs, with up to 4000 OSTs

 	

 Single OSS:

 32x 8TiB OSTs per OSS (ldiskfs),

 8x 32TiB OSTs per OSS (ldiskfs)

 1x 72TiB OST per OSS (ZFS)

 OSS count:

 450 OSSs with 1000 4TiB OSTs

 192 OSSs with 1344 8TiB OSTs

 768 OSSs with 768 72TiB OSTs

	

 OSS Performance

 	

 Single OSS:

 15 GB/sec

 Aggregate:

 10 TB/sec

 	

 Single OSS:

 10 GB/sec

 Aggregate:

 2.5 TB/sec

	

 MDS Scalability

 	

 Single MDS:

		1-4 MDTs per MDS

 Single MDT:

 4 billion files, 8TiB per MDT (ldiskfs)

		64 billion files, 64TiB per MDT (ZFS)

 MDS count:

 1 primary + 1 standby

 Introduced in Lustre 2.4256 MDSs, with up to 256 MDTs

 	

 Single MDS:

 3 billion files

 MDS count:

 7 MDS with 7 2TiB MDTs in production

 256 MDS with 256 64GiB MDTs in testing

	

 MDS Performance

 	
 50000/s create operations,

 200000/s metadata stat operations

 	
 15000/s create operations,

 50000/s metadata stat operations

	

 File system Scalability

 	

 Single File:

 32 PiB max file size (ldiskfs)

		2^63 bytes (ZFS)

 Aggregate:

 512 PiB space, 1 trillion files

 	

 Single File:

 multi-TiB max file size

 Aggregate:

 55 PiB space, 8 billion files

Other Lustre software features are:
	
 Performance-enhanced ext4 file
 system:The Lustre file system uses an improved version of
 the ext4 journaling file system to store data and metadata. This
 version, called

 ldiskfs
 , has been enhanced to improve performance and provide
 additional functionality needed by the Lustre file system.

	Introduced in Lustre 2.4With the Lustre software release 2.4 and later,
 it is also possible to use ZFS as the backing filesystem for Lustre
 for the MDT, OST, and MGS storage. This allows Lustre to leverage the
 scalability and data integrity features of ZFS for individual storage
 targets.

	
 POSIX standard compliance:The full
 POSIX test suite passes in an identical manner to a local ext4 file
 system, with limited exceptions on Lustre clients. In a cluster, most
 operations are atomic so that clients never see stale data or
 metadata. The Lustre software supports mmap() file I/O.

	
 High-performance heterogeneous
 networking:The Lustre software supports a variety of high
 performance, low latency networks and permits Remote Direct Memory
 Access (RDMA) for InfiniBand
 *(utilizing OpenFabrics Enterprise
 Distribution (OFED*), Intel OmniPath®,
	 and other advanced networks for fast
 and efficient network transport. Multiple RDMA networks can be
 bridged using Lustre routing for maximum performance. The Lustre
 software also includes integrated network diagnostics.

	
 High-availability:The Lustre file
 system supports active/active failover using shared storage
 partitions for OSS targets (OSTs). Lustre software release 2.3 and
 earlier releases offer active/passive failover using a shared storage
 partition for the MDS target (MDT). The Lustre file system can work
 with a variety of high availability (HA) managers to allow automated
 failover and has no single point of failure (NSPF). This allows
 application transparent recovery. Multiple mount protection (MMP)
 provides integrated protection from errors in highly-available
 systems that would otherwise cause file system corruption.

	Introduced in Lustre 2.4With Lustre software release 2.4 or later
 servers and clients it is possible to configure active/active
 failover of multiple MDTs. This allows scaling the metadata
 performance of Lustre filesystems with the addition of MDT storage
 devices and MDS nodes.

	
 Security:By default TCP connections
 are only allowed from privileged ports. UNIX group membership is
 verified on the MDS.

	
 Access control list (ACL), extended
 attributes:the Lustre security model follows that of a
 UNIX file system, enhanced with POSIX ACLs. Noteworthy additional
 features include root squash.

	
 Interoperability:The Lustre file
 system runs on a variety of CPU architectures and mixed-endian
 clusters and is interoperable between successive major Lustre
 software releases.

	
 Object-based architecture:Clients
 are isolated from the on-disk file structure enabling upgrading of
 the storage architecture without affecting the client.

	
 Byte-granular file and fine-grained metadata
 locking:Many clients can read and modify the same file or
 directory concurrently. The Lustre distributed lock manager (LDLM)
 ensures that files are coherent between all clients and servers in
 the file system. The MDT LDLM manages locks on inode permissions and
 pathnames. Each OST has its own LDLM for locks on file stripes stored
 thereon, which scales the locking performance as the file system
 grows.

	
 Quotas:User and group quotas are
 available for a Lustre file system.

	
 Capacity growth:The size of a Lustre
 file system and aggregate cluster bandwidth can be increased without
 interruption by adding new OSTs and MDTs to the cluster.

	
 Controlled file layout:The layout of
 files across OSTs can be configured on a per file, per directory, or
 per file system basis. This allows file I/O to be tuned to specific
 application requirements within a single file system. The Lustre file
 system uses RAID-0 striping and balances space usage across
 OSTs.

	
 Network data integrity protection:A
 checksum of all data sent from the client to the OSS protects against
 corruption during data transfer.

	
 MPI I/O:The Lustre architecture has
 a dedicated MPI ADIO layer that optimizes parallel I/O to match the
 underlying file system architecture.

	
 NFS and CIFS export:Lustre files can
 be re-exported using NFS (via Linux knfsd or Ganesha) or CIFS (via
	 Samba), enabling them to be shared with non-Linux clients such as
	 Microsoft*Windows,
 *Apple
 *Mac OS X
 *, and others.

	
 Disaster recovery tool:The Lustre
 file system provides an online distributed file system check (LFSCK)
 that can restore consistency between storage components in case of a
 major file system error. A Lustre file system can operate even in the
 presence of file system inconsistencies, and LFSCK can run while the
 filesystem is in use, so LFSCK is not required to complete before
 returning the file system to production.

	
 Performance monitoring:The Lustre
 file system offers a variety of mechanisms to examine performance and
 tuning.

	
 Open source:The Lustre software is
 licensed under the GPL 2.0 license for use with the Linux operating
 system.

1.2.
 Lustre Components

An installation of the Lustre software includes a management server
 (MGS) and one or more Lustre file systems interconnected with Lustre
 networking (LNet).
A basic configuration of Lustre file system components is shown in
 Figure 1.1, “Lustre file system components in a basic cluster”.
Figure 1.1. Lustre file system components in a basic cluster
[image: Lustre file system components in a basic cluster]

1.2.1.
 Management Server (MGS)

The MGS stores configuration information for all the Lustre file
 systems in a cluster and provides this information to other Lustre
 components. Each Lustre target contacts the MGS to provide information,
 and Lustre clients contact the MGS to retrieve information.
It is preferable that the MGS have its own storage space so that it
 can be managed independently. However, the MGS can be co-located and
 share storage space with an MDS as shown in
 Figure 1.1, “Lustre file system components in a basic cluster”.

1.2.2. Lustre File System Components

Each Lustre file system consists of the following
 components:
	
 Metadata Servers (MDS)- The MDS makes
 metadata stored in one or more MDTs available to Lustre clients. Each
 MDS manages the names and directories in the Lustre file system(s)
 and provides network request handling for one or more local
 MDTs.

	
 Metadata Targets (MDT) - For Lustre
 software release 2.3 and earlier, each file system has one MDT. The
 MDT stores metadata (such as filenames, directories, permissions and
 file layout) on storage attached to an MDS. Each file system has one
 MDT. An MDT on a shared storage target can be available to multiple
 MDSs, although only one can access it at a time. If an active MDS
 fails, a standby MDS can serve the MDT and make it available to
 clients. This is referred to as MDS failover.
Introduced in Lustre 2.4Since Lustre software release 2.4, multiple
 MDTs are supported in the Distributed Namespace Environment (DNE).
 In addition to the primary MDT that holds the filesystem root, it
 is possible to add additional MDS nodes, each with their own MDTs,
 to hold sub-directory trees of the filesystem.

Introduced in Lustre 2.8Since Lustre software release 2.8, DNE also
 allows the filesystem to distribute files of a single directory over
 multiple MDT nodes. A directory which is distributed across multiple
 MDTs is known as a striped directory.

	
 Object Storage Servers (OSS): The
 OSS provides file I/O service and network request handling for one or
 more local OSTs. Typically, an OSS serves between two and eight OSTs,
 up to 16 TiB each. A typical configuration is an MDT on a dedicated
 node, two or more OSTs on each OSS node, and a client on each of a
 large number of compute nodes.

	
 Object Storage Target (OST): User
 file data is stored in one or more objects, each object on a separate
 OST in a Lustre file system. The number of objects per file is
 configurable by the user and can be tuned to optimize performance for
 a given workload.

	
 Lustre clients: Lustre clients are
 computational, visualization or desktop nodes that are running Lustre
 client software, allowing them to mount the Lustre file
 system.

The Lustre client software provides an interface between the Linux
 virtual file system and the Lustre servers. The client software includes
 a management client (MGC), a metadata client (MDC), and multiple object
 storage clients (OSCs), one corresponding to each OST in the file
 system.
A logical object volume (LOV) aggregates the OSCs to provide
 transparent access across all the OSTs. Thus, a client with the Lustre
 file system mounted sees a single, coherent, synchronized namespace.
 Several clients can write to different parts of the same file
 simultaneously, while, at the same time, other clients can read from the
 file.
A logical metadata volume (LMV) aggregates the MDCs to provide
 transparent access across all the MDTs in a similar manner as the LOV
 does for file access. This allows the client to see the directory tree
 on multiple MDTs as a single coherent namespace, and striped directories
 are merged on the clients to form a single visible directory to users
 and applications.

 Table 1.2, “
 Storage and hardware requirements for Lustre file system
 components”provides the
 requirements for attached storage for each Lustre file system component
 and describes desirable characteristics of the hardware used.
Table 1.2.
 Storage and hardware requirements for Lustre file system
 components
	

 	

 Required attached storage

 	

 Desirable hardware
 characteristics

	

 MDSs

 	
 1-2% of file system capacity

 	
 Adequate CPU power, plenty of memory, fast disk
 storage.

	

 OSSs

 	
 1-128 TiB per OST, 1-8 OSTs per OSS

 	
 Good bus bandwidth. Recommended that storage be balanced
 evenly across OSSs and matched to network bandwidth.

	

 Clients

 	
 No local storage needed

 	
 Low latency, high bandwidth network.

For additional hardware requirements and considerations, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.

1.2.3.
 Lustre Networking (LNet)

Lustre Networking (LNet) is a custom networking API that provides
 the communication infrastructure that handles metadata and file I/O data
 for the Lustre file system servers and clients. For more information
 about LNet, see
 Chapter 2, Understanding Lustre Networking (LNet).

1.2.4.
 Lustre Cluster

At scale, a Lustre file system cluster can include hundreds of OSSs
 and thousands of clients (see
 Figure 1.2, “
 Lustre cluster at scale”). More than one
 type of network can be used in a Lustre cluster. Shared storage between
 OSSs enables failover capability. For more details about OSS failover,
 see
 Chapter 3, Understanding Failover in a
 Lustre File System.
Figure 1.2.
 Lustre cluster at scale
[image: Lustre file system cluster at scale]

1.3.

 Lustre File System Storage and I/O

In Lustre software release 2.0, Lustre file identifiers (FIDs) were
 introduced to replace UNIX inode numbers for identifying files or objects.
 A FID is a 128-bit identifier that contains a unique 64-bit sequence
 number, a 32-bit object ID (OID), and a 32-bit version number. The sequence
 number is unique across all Lustre targets in a file system (OSTs and
 MDTs). This change enabled future support for multiple MDTs (introduced in
 Lustre software release 2.4) and ZFS (introduced in Lustre software release
 2.4).
Also introduced in release 2.0 is an ldiskfs feature named
 FID-in-dirent(also known as
 dirdata) in which the FID is stored as
 part of the name of the file in the parent directory. This feature
 significantly improves performance for
 ls command executions by reducing disk I/O. The
 FID-in-dirent is generated at the time the file is created.
Note
The FID-in-dirent feature is not backward compatible with the
 release 1.8 ldiskfs disk format. Therefore, when an upgrade from
 release 1.8 to release 2.x is performed, the FID-in-dirent feature is
 not automatically enabled. For upgrades from release 1.8 to releases
 2.0 through 2.3, FID-in-dirent can be enabled manually but only takes
 effect for new files.
For more information about upgrading from Lustre software release
 1.8 and enabling FID-in-dirent for existing files, see
 Chapter 17, Upgrading a Lustre File SystemChapter 16 “Upgrading a Lustre File
 System”.

Introduced in Lustre 2.4The LFSCK file system consistency checking tool
 released with Lustre software release 2.4 provides functionality that
 enables FID-in-dirent for existing files. It includes the following
 functionality:

	Generates IGIF mode FIDs for existing files from a 1.8 version
 file system files.

	Verifies the FID-in-dirent for each file and regenerates the
 FID-in-dirent if it is invalid or missing.

	Verifies the linkEA entry for each and regenerates the linkEA
 if it is invalid or missing. The
 linkEA consists of the file name and
 parent FID. It is stored as an extended attribute in the file
 itself. Thus, the linkEA can be used to reconstruct the full path name
	of a file.

Information about where file data is located on the OST(s) is stored
 as an extended attribute called layout EA in an MDT object identified by
 the FID for the file (see
 Figure 1.3, “Layout EA on MDT pointing to file data on OSTs”). If the file is a regular file (not a
 directory or symbol link), the MDT object points to 1-to-N OST object(s) on
 the OST(s) that contain the file data. If the MDT file points to one
 object, all the file data is stored in that object. If the MDT file points
 to more than one object, the file data is
 striped across the objects using RAID 0,
 and each object is stored on a different OST. (For more information about
 how striping is implemented in a Lustre file system, see
 Section 1.3.1, “

 Lustre File System and Striping”.
Figure 1.3. Layout EA on MDT pointing to file data on OSTs
[image: Layout EA on MDT pointing to file data on OSTs]

When a client wants to read from or write to a file, it first fetches
 the layout EA from the MDT object for the file. The client then uses this
 information to perform I/O on the file, directly interacting with the OSS
 nodes where the objects are stored.

 This process is illustrated in
 Figure 1.4, “Lustre client requesting file data”
 .
Figure 1.4. Lustre client requesting file data
[image: Lustre client requesting file data]

The available bandwidth of a Lustre file system is determined as
 follows:
	The
 network bandwidth equals the aggregated bandwidth
 of the OSSs to the targets.

	The
 disk bandwidth equals the sum of the disk
 bandwidths of the storage targets (OSTs) up to the limit of the network
 bandwidth.

	The
 aggregate bandwidth equals the minimum of the disk
 bandwidth and the network bandwidth.

	The
 available file system space equals the sum of the
 available space of all the OSTs.

1.3.1.

 Lustre File System and Striping

One of the main factors leading to the high performance of Lustre
 file systems is the ability to stripe data across multiple OSTs in a
 round-robin fashion. Users can optionally configure for each file the
 number of stripes, stripe size, and OSTs that are used.
Striping can be used to improve performance when the aggregate
 bandwidth to a single file exceeds the bandwidth of a single OST. The
 ability to stripe is also useful when a single OST does not have enough
 free space to hold an entire file. For more information about benefits
 and drawbacks of file striping, see
 Section 19.2, “
 Lustre File Layout (Striping) Considerations”.
Striping allows segments or 'chunks' of data in a file to be stored
 on different OSTs, as shown in
 Figure 1.5, “File striping on a
 Lustre file system”. In the Lustre file
 system, a RAID 0 pattern is used in which data is "striped" across a
 certain number of objects. The number of objects in a single file is
 called the
 stripe_count.
Each object contains a chunk of data from the file. When the chunk
 of data being written to a particular object exceeds the
 stripe_size, the next chunk of data in the file is
 stored on the next object.
Default values for
 stripe_count and
 stripe_size are set for the file system. The default
 value for
 stripe_count is 1 stripe for file and the default value
 for
 stripe_size is 1MB. The user may change these values on
 a per directory or per file basis. For more details, see
 Section 19.3, “Setting the File Layout/Striping Configuration (lfs
 setstripe)”.

 Figure 1.5, “File striping on a
 Lustre file system”, the
 stripe_size for File C is larger than the
 stripe_size for File A, allowing more data to be stored
 in a single stripe for File C. The
 stripe_count for File A is 3, resulting in data striped
 across three objects, while the
 stripe_count for File B and File C is 1.
No space is reserved on the OST for unwritten data. File A in
 Figure 1.5, “File striping on a
 Lustre file system”.
Figure 1.5. File striping on a
 Lustre file system
[image: File striping pattern across three OSTs for three different data files. The file is sparse and missing chunk 6.]

The maximum file size is not limited by the size of a single
 target. In a Lustre file system, files can be striped across multiple
 objects (up to 2000), and each object can be up to 16 TiB in size with
 ldiskfs, or up to 256PiB with ZFS. This leads to a maximum file size of
 31.25 PiB for ldiskfs or 8EiB with ZFS. Note that a Lustre file system can
 support files up to 2^63 bytes (8EiB), limited only by the space available
 on the OSTs.
Note
Versions of the Lustre software prior to Release 2.2 limited the
 maximum stripe count for a single file to 160 OSTs.

Although a single file can only be striped over 2000 objects,
 Lustre file systems can have thousands of OSTs. The I/O bandwidth to
 access a single file is the aggregated I/O bandwidth to the objects in a
 file, which can be as much as a bandwidth of up to 2000 servers. On
 systems with more than 2000 OSTs, clients can do I/O using multiple files
 to utilize the full file system bandwidth.
For more information about striping, see
 Chapter 19, Managing File Layout (Striping) and Free
 Space.

Chapter 2. Understanding Lustre Networking (LNet)

This chapter introduces Lustre networking (LNet). It includes the following sections:
	
 Section 2.1, “ Introducing LNet”

	
 Section 2.2, “Key Features of LNet”

	Section 2.3, “Lustre Networks”

	
 Section 2.4, “Supported Network Types”

2.1. Introducing LNet

In a cluster using one or more Lustre file systems, the network communication
 infrastructure required by the Lustre file system is implemented using the Lustre networking
 (LNet) feature.
LNet supports many commonly-used network types, such as InfiniBand and IP networks, and
 allows simultaneous availability across multiple network types with routing between them.
 Remote direct memory access (RDMA) is permitted when supported by underlying networks using
 the appropriate Lustre network driver (LND). High availability and recovery features enable
 transparent recovery in conjunction with failover servers.
An LND is a pluggable driver that provides support for a particular network type, for
 example ksocklnd is the driver which implements the TCP Socket LND that
 supports TCP networks. LNDs are loaded into the driver stack, with one LND for each network
 type in use.
For information about configuring LNet, see Chapter 9, Configuring Lustre Networking (LNet).
For information about administering LNet, see Part III, “Administering Lustre”.

2.2. Key Features of LNet

Key features of LNet include:
	RDMA, when supported by underlying networks

	Support for many commonly-used network types

	High availability and recovery

	Support of multiple network types simultaneously

	Routing among disparate networks

LNet permits end-to-end read/write throughput at or near peak bandwidth rates on a variety
 of network interconnects.

2.3. Lustre Networks

A Lustre network is comprised of clients and servers running the Lustre software. It need
 not be confined to one LNet subnet but can span several networks provided routing is possible
 between the networks. In a similar manner, a single network can have multiple LNet subnets.
The Lustre networking stack is comprised of two layers, the LNet code module and the LND.
 The LNet layer operates above the LND layer in a manner similar to the way the network layer
 operates above the data link layer. LNet layer is connectionless, asynchronous and does not
 verify that data has been transmitted while the LND layer is connection oriented and typically
 does verify data transmission.
LNets are uniquely identified by a label comprised of a string corresponding to an LND and
 a number, such as tcp0, o2ib0, or o2ib1, that uniquely identifies each LNet. Each node on an
 LNet has at least one network identifier (NID). A NID is a combination of the address of the
 network interface and the LNet label in the
 form:address@LNet_label.
Examples:
192.168.1.2@tcp0
10.13.24.90@o2ib1
In certain circumstances it might be desirable for Lustre file system traffic to pass
 between multiple LNets. This is possible using LNet routing. It is important to realize that
 LNet routing is not the same as network routing. For more details about LNet routing, see
 Chapter 9, Configuring Lustre Networking (LNet)

2.4. Supported Network Types

The LNet code module includes LNDs to support many network types including:
	 InfiniBand: OpenFabrics OFED (o2ib)

	 TCP (any network carrying TCP traffic, including GigE, 10GigE, and IPoIB)

	 RapidArray: ra

	 Quadrics: Elan

Chapter 3. Understanding Failover in a
 Lustre File System

This chapter describes failover in a Lustre file system. It
 includes:
	
 Section 3.1, “
 What is Failover?”

	
 Section 3.2, “
 Failover Functionality in a Lustre File System”

3.1.
 What is Failover?

In a high-availability (HA) system, unscheduled downtime is minimized
 by using redundant hardware and software components and software components
 that automate recovery when a failure occurs. If a failure condition
 occurs, such as the loss of a server or storage device or a network or
 software fault, the system's services continue with minimal interruption.
 Generally, availability is specified as the percentage of time the system
 is required to be available.
Availability is accomplished by replicating hardware and/or software
 so that when a primary server fails or is unavailable, a standby server can
 be switched into its place to run applications and associated resources.
 This process, called
 failover, is automatic in an HA system
 and, in most cases, completely application-transparent.
A failover hardware setup requires a pair of servers with a shared
 resource (typically a physical storage device, which may be based on SAN,
 NAS, hardware RAID, SCSI or Fibre Channel (FC) technology). The method of
 sharing storage should be essentially transparent at the device level; the
 same physical logical unit number (LUN) should be visible from both
 servers. To ensure high availability at the physical storage level, we
 encourage the use of RAID arrays to protect against drive-level
 failures.
Note
The Lustre software does not provide redundancy for data; it
 depends exclusively on redundancy of backing storage devices. The backing
 OST storage should be RAID 5 or, preferably, RAID 6 storage. MDT storage
 should be RAID 1 or RAID 10.

3.1.1.
 Failover Capabilities

To establish a highly-available Lustre file system, power
 management software or hardware and high availability (HA) software are
 used to provide the following failover capabilities:
	
 Resource fencing- Protects physical
 storage from simultaneous access by two nodes.

	
 Resource management- Starts and
 stops the Lustre resources as a part of failover, maintains the
 cluster state, and carries out other resource management
 tasks.

	
 Health monitoring- Verifies the
 availability of hardware and network resources and responds to health
 indications provided by the Lustre software.

These capabilities can be provided by a variety of software and/or
 hardware solutions. For more information about using power management
 software or hardware and high availability (HA) software with a Lustre
 file system, see
 Chapter 11, Configuring Failover in a Lustre File System.
HA software is responsible for detecting failure of the primary
 Lustre server node and controlling the failover.The Lustre software works
 with any HA software that includes resource (I/O) fencing. For proper
 resource fencing, the HA software must be able to completely power off
 the failed server or disconnect it from the shared storage device. If two
 active nodes have access to the same storage device, data may be severely
 corrupted.

3.1.2.
 Types of Failover Configurations

Nodes in a cluster can be configured for failover in several ways.
 They are often configured in pairs (for example, two OSTs attached to a
 shared storage device), but other failover configurations are also
 possible. Failover configurations include:
	
 Active/passive pair - In this
 configuration, the active node provides resources and serves data,
 while the passive node is usually standing by idle. If the active
 node fails, the passive node takes over and becomes active.

	
 Active/active pair - In this
 configuration, both nodes are active, each providing a subset of
 resources. In case of a failure, the second node takes over resources
 from the failed node.

In Lustre software releases previous to Lustre software release
 2.4, MDSs can be configured as an active/passive pair, while OSSs can be
 deployed in an active/active configuration that provides redundancy
 without extra overhead. Often the standby MDS is the active MDS for
 another Lustre file system or the MGS, so no nodes are idle in the
 cluster.
Introduced in Lustre 2.4Lustre software release 2.4 introduces metadata
 targets for individual sub-directories. Active-active failover
 configurations are available for MDSs that serve MDTs on shared
 storage.

3.2.
 Failover Functionality in a Lustre File System

The failover functionality provided by the Lustre software can be
 used for the following failover scenario. When a client attempts to do I/O
 to a failed Lustre target, it continues to try until it receives an answer
 from any of the configured failover nodes for the Lustre target. A
 user-space application does not detect anything unusual, except that the
 I/O may take longer to complete.
Failover in a Lustre file system requires that two nodes be
 configured as a failover pair, which must share one or more storage
 devices. A Lustre file system can be configured to provide MDT or OST
 failover.
	For MDT failover, two MDSs can be configured to serve the same
 MDT. Only one MDS node can serve an MDT at a time.
Introduced in Lustre 2.4Lustre software release 2.4 allows multiple MDTs.
 By placing two or more MDT partitions on storage shared by two MDSs,
 one MDS can fail and the remaining MDS can begin serving the unserved
 MDT. This is described as an active/active failover pair.

	For OST failover, multiple OSS nodes can be configured to be able
 to serve the same OST. However, only one OSS node can serve the OST at
 a time. An OST can be moved between OSS nodes that have access to the
 same storage device using
 umount/mount commands.

The
 --servicenode option is used to set up nodes in a Lustre
 file system for failover at creation time (using
 mkfs.lustre) or later when the Lustre file system is
 active (using
 tunefs.lustre). For explanations of these utilities, see

 Section 43.14, “
mkfs.lustre”and
 Section 43.18, “
tunefs.lustre”.
Failover capability in a Lustre file system can be used to upgrade
 the Lustre software between successive minor versions without cluster
 downtime. For more information, see
 Chapter 17, Upgrading a Lustre File System.
For information about configuring failover, see
 Chapter 11, Configuring Failover in a Lustre File System.
Note
The Lustre software provides failover functionality only at the
 file system level. In a complete failover solution, failover
 functionality for system-level components, such as node failure detection
 or power control, must be provided by a third-party tool.

Caution
OST failover functionality does not protect against corruption
 caused by a disk failure. If the storage media (i.e., physical disk) used
 for an OST fails, it cannot be recovered by functionality provided in the
 Lustre software. We strongly recommend that some form of RAID be used for
 OSTs. Lustre functionality assumes that the storage is reliable, so it
 adds no extra reliability features.

3.2.1.
 MDT Failover Configuration (Active/Passive)

Two MDSs are typically configured as an active/passive failover
 pair as shown in
 Figure 3.1, “Lustre failover configuration for a active/passive MDT”. Note that both
 nodes must have access to shared storage for the MDT(s) and the MGS. The
 primary (active) MDS manages the Lustre system metadata resources. If the
 primary MDS fails, the secondary (passive) MDS takes over these resources
 and serves the MDTs and the MGS.
Note
In an environment with multiple file systems, the MDSs can be
 configured in a quasi active/active configuration, with each MDS
 managing metadata for a subset of the Lustre file system.

Figure 3.1. Lustre failover configuration for a active/passive MDT
[image: Lustre failover configuration for an MDT]

Introduced in Lustre 2.43.2.2.
 MDT Failover Configuration (Active/Active)

Multiple MDTs became available with the advent of Lustre software
 release 2.4. MDTs can be setup as an active/active failover
 configuration. A failover cluster is built from two MDSs as shown in
 Figure 3.2, “Lustre failover configuration for a active/active MDTs”.
Figure 3.2. Lustre failover configuration for a active/active MDTs
[image: Lustre failover configuration for two MDTs]

3.2.3.
 OST Failover Configuration (Active/Active)

OSTs are usually configured in a load-balanced, active/active
 failover configuration. A failover cluster is built from two OSSs as
 shown in
 Figure 3.3, “Lustre failover configuration for an OSTs”.
Note
OSSs configured as a failover pair must have shared
 disks/RAID.

Figure 3.3. Lustre failover configuration for an OSTs
[image: Lustre failover configuration for an OSTs]

In an active configuration, 50% of the available OSTs are assigned
 to one OSS and the remaining OSTs are assigned to the other OSS. Each OSS
 serves as the primary node for half the OSTs and as a failover node for
 the remaining OSTs.
In this mode, if one OSS fails, the other OSS takes over all of the
 failed OSTs. The clients attempt to connect to each OSS serving the OST,
 until one of them responds. Data on the OST is written synchronously, and
 the clients replay transactions that were in progress and uncommitted to
 disk before the OST failure.
For more information about configuring failover, see
 Chapter 11, Configuring Failover in a Lustre File System.

Chapter 4. Installation Overview

This chapter provides on overview of the procedures required to set up, install and configure a Lustre file system.
Note
 If the Lustre file system is new to you, you may find it helpful to refer to Part I, “Introducing the Lustre* File System” for a description of the Lustre architecture, file system components
 and terminology before proceeding with the installation procedure.

4.1.
 Steps to Installing the Lustre Software

To set up Lustre file system hardware and install and configure the Lustre software, refer the the chapters below in the order listed:
	
 (Required)
 Set up your Lustre file system hardware.
See Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options - Provides guidelines for configuring hardware for a Lustre file system including storage, memory, and networking requirements.

	 (Optional - Highly Recommended) Configure storage on Lustre storage devices.
See Chapter 6, Configuring Storage on a Lustre File System - Provides instructions for setting up hardware RAID on Lustre storage devices.

	 (Optional) Set up network interface bonding.
See Chapter 7, Setting Up Network Interface Bonding - Describes setting up network interface bonding to allow multiple network interfaces to be used in parallel to increase bandwidth or redundancy.

	(Required) Install Lustre software.
See Chapter 8, Installing the Lustre Software - Describes preparation steps and a procedure for installing the Lustre software.

	(Optional)
 Configure Lustre Networking (LNet).
See Chapter 9, Configuring Lustre Networking (LNet) - Describes how to configure LNet if the default
 configuration is not sufficient. By default, LNet will use the first TCP/IP interface it
 discovers on a system. LNet configuration is required if you are using InfiniBand or
 multiple Ethernet interfaces.

	(Required)
 Configure the Lustre file system.
See Chapter 10, Configuring a Lustre File
 System - Provides an example of a simple Lustre configuration procedure and points to tools for completing more complex configurations.

	(Optional)
 Configure Lustre failover.
See Chapter 11, Configuring Failover in a Lustre File System - Describes how to configure Lustre
 failover.

Chapter 5. Determining Hardware Configuration Requirements and
 Formatting Options

This chapter describes hardware configuration requirements for a Lustre file system
 including:
	
 Section 5.1, “

 Hardware Considerations”

	
 Section 5.2, “

 Determining Space Requirements”

	
 Section 5.3, “

 Setting ldiskfs File System Formatting Options
 ”

	
 Section 5.5, “Determining Memory Requirements”

	
 Section 5.6, “Implementing Networks To Be Used by the Lustre File System”

5.1.

 Hardware Considerations

A Lustre file system can utilize any kind of block storage device such as single disks,
 software RAID, hardware RAID, or a logical volume manager. In contrast to some networked file
 systems, the block devices are only attached to the MDS and OSS nodes in a Lustre file system
 and are not accessed by the clients directly.
Since the block devices are accessed by only one or two server nodes, a storage area network (SAN) that is accessible from all the servers is not required. Expensive switches are not needed because point-to-point connections between the servers and the storage arrays normally provide the simplest and best attachments. (If failover capability is desired, the storage must be attached to multiple servers.)
For a production environment, it is preferable that the MGS have separate storage to allow future expansion to multiple file systems. However, it is possible to run the MDS and MGS on the same machine and have them share the same storage device.
For best performance in a production environment, dedicated clients are required. For a non-production Lustre environment or for testing, a Lustre client and server can run on the same machine. However, dedicated clients are the only supported configuration.
Warning
Performance and recovery issues can occur if you put a client on an MDS or OSS:
	Running the OSS and a client on the same machine can cause issues with low memory and memory pressure. If the client consumes all the memory and then tries to write data to the file system, the OSS will need to allocate pages to receive data from the client but will not be able to perform this operation due to low memory. This can cause the client to hang.

	Running the MDS and a client on the same machine can cause recovery and deadlock issues and impact the performance of other Lustre clients.

Only servers running on 64-bit CPUs are tested and supported. 64-bit CPU clients are
 typically used for testing to match expected customer usage and avoid limitations due to the 4
 GB limit for RAM size, 1 GB low-memory limitation, and 16 TB file size limit of 32-bit CPUs.
 Also, due to kernel API limitations, performing backups of Lustre software release 2.x. file
 systems on 32-bit clients may cause backup tools to confuse files that have the same 32-bit
 inode number.
The storage attached to the servers typically uses RAID to provide fault tolerance and can
 optionally be organized with logical volume management (LVM), which is then formatted as a
 Lustre file system. Lustre OSS and MDS servers read, write and modify data in the format
 imposed by the file system.
The Lustre file system uses journaling file system technology on both the MDTs and OSTs.
 For a MDT, as much as a 20 percent performance gain can be obtained by placing the journal on
 a separate device.
The MDS can effectively utilize a lot of CPU cycles. A minimum of four processor cores are recommended. More are advisable for files systems with many clients.
Note
Lustre clients running on architectures with different endianness are supported. One limitation is that the PAGE_SIZE kernel macro on the client must be as large as the PAGE_SIZE of the server. In particular, ia64 or PPC clients with large pages (up to 64kB pages) can run with x86 servers (4kB pages). If you are running x86 clients with ia64 or PPC servers, you must compile the ia64 kernel with a 4kB PAGE_SIZE (so the server page size is not larger than the client page size).

5.1.1. MGT and MDT Storage Hardware Considerations

MGT storage requirements are small (less than 100 MB even in the
 largest Lustre file systems), and the data on an MGT is only accessed
 on a server/client mount, so disk performance is not a consideration.
 However, this data is vital for file system access, so
 the MGT should be reliable storage, preferably mirrored RAID1.
MDS storage is accessed in a database-like access pattern with
 many seeks and read-and-writes of small amounts of data.
 Storage types that provide much lower seek times, such as SSD or NVMe
 is strongly preferred for the MDT, and high-RPM SAS is acceptable.
For maximum performance, the MDT should be configured as RAID1 with
 an internal journal and two disks from different controllers.
If you need a larger MDT, create multiple RAID1 devices from pairs
 of disks, and then make a RAID0 array of the RAID1 devices. For ZFS,
 use mirror VDEVs for the MDT. This ensures
 maximum reliability because multiple disk failures only have a small
 chance of hitting both disks in the same RAID1 device.
Doing the opposite (RAID1 of a pair of RAID0 devices) has a 50%
 chance that even two disk failures can cause the loss of the whole MDT
 device. The first failure disables an entire half of the mirror and the
 second failure has a 50% chance of disabling the remaining mirror.
Introduced in Lustre 2.4If multiple MDTs are going to be present in the
 system, each MDT should be specified for the anticipated usage and load.
 For details on how to add additional MDTs to the filesystem, see
 Section 14.7, “Adding a New MDT to a Lustre File System”.

Introduced in Lustre 2.4Warning
MDT0 contains the root of the Lustre file
 system. If MDT0 is unavailable for any reason, the file system cannot be
 used.

Introduced in Lustre 2.4Note
Using the DNE feature it is possible to
 dedicate additional MDTs to sub-directories off the file system root
 directory stored on MDT0, or arbitrarily for lower-level subdirectories.
 using the lfs mkdir -i mdt_index command.
 If an MDT serving a subdirectory becomes unavailable, any subdirectories
 on that MDT and all directories beneath it will also become inaccessible.
 Configuring multiple levels of MDTs is an experimental feature for the
 2.4 release, and is fully functional in the 2.8 release. This is
 typically useful for top-level directories to assign different users
 or projects to separate MDTs, or to distribute other large working sets
 of files to multiple MDTs.

Introduced in Lustre 2.8Note
Starting in the 2.8 release it is possible
 to spread a single large directory across multiple MDTs using the DNE
 striped directory feature by specifying multiple stripes (or shards)
 at creation time using the
 lfs mkdir -c stripe_count
 command, where stripe_count is often the
 number of MDTs in the filesystem. Striped directories should typically
 not be used for all directories in the filesystem, since this incurs
 extra overhead compared to non-striped directories, but is useful for
 larger directories (over 50k entries) where many output files are being
 created at one time.

5.1.2. OST Storage Hardware Considerations

The data access pattern for the OSS storage is a streaming I/O
 pattern that is dependent on the access patterns of applications being
 used. Each OSS can manage multiple object storage targets (OSTs), one
 for each volume with I/O traffic load-balanced between servers and
 targets. An OSS should be configured to have a balance between the
 network bandwidth and the attached storage bandwidth to prevent
 bottlenecks in the I/O path. Depending on the server hardware, an OSS
 typically serves between 2 and 8 targets, with each target between
 24-48TB, but may be up to 256 terabytes (TBs) in size.
Lustre file system capacity is the sum of the capacities provided
 by the targets. For example, 64 OSSs, each with two 8 TB OSTs,
 provide a file system with a capacity of nearly 1 PB. If each OST uses
 ten 1 TB SATA disks (8 data disks plus 2 parity disks in a RAID-6
 configuration), it may be possible to get 50 MB/sec from each drive,
 providing up to 400 MB/sec of disk bandwidth per OST. If this system
 is used as storage backend with a system network, such as the InfiniBand
 network, that provides a similar bandwidth, then each OSS could provide
 800 MB/sec of end-to-end I/O throughput. (Although the architectural
 constraints described here are simple, in practice it takes careful
 hardware selection, benchmarking and integration to obtain such
 results.)

5.2.

 Determining Space Requirements

The desired performance characteristics of the backing file systems
 on the MDT and OSTs are independent of one another. The size of the MDT
 backing file system depends on the number of inodes needed in the total
 Lustre file system, while the aggregate OST space depends on the total
 amount of data stored on the file system. If MGS data is to be stored
 on the MDT device (co-located MGT and MDT), add 100 MB to the required
 size estimate for the MDT.
Each time a file is created on a Lustre file system, it consumes
 one inode on the MDT and one OST object over which the file is striped.
 Normally, each file's stripe count is based on the system-wide
 default stripe count. However, this can be changed for individual files
 using the lfs setstripe option. For more details,
 see Chapter 19, Managing File Layout (Striping) and Free
 Space.
In a Lustre ldiskfs file system, all the MDT inodes and OST
 objects are allocated when the file system is first formatted. When
 the file system is in use and a file is created, metadata associated
 with that file is stored in one of the pre-allocated inodes and does
 not consume any of the free space used to store file data. The total
 number of inodes on a formatted ldiskfs MDT or OST cannot be easily
 changed. Thus, the number of inodes created at format time should be
 generous enough to anticipate near term expected usage, with some room
 for growth without the effort of additional storage.
By default, the ldiskfs file system used by Lustre servers to store
 user-data objects and system data reserves 5% of space that cannot be used
 by the Lustre file system. Additionally, an ldiskfs Lustre file system
 reserves up to 400 MB on each OST, and up to 4GB on each MDT for journal
 use and a small amount of space outside the journal to store accounting
 data. This reserved space is unusable for general storage. Thus, at least
 this much space will be used per OST before any file object data is saved.

Introduced in Lustre 2.4With a ZFS backing filesystem for the MDT or OST,
 the space allocation for inodes and file data is dynamic, and inodes are
 allocated as needed. A minimum of 4kB of usable space (before mirroring)
 is needed for each inode, exclusive of other overhead such as directories,
 internal log files, extended attributes, ACLs, etc. ZFS also reserves
 approximately 3% of the total storage space for internal and redundant
 metadata, which is not usable by Lustre.
 Since the size of extended attributes and ACLs is highly dependent on
 kernel versions and site-specific policies, it is best to over-estimate
 the amount of space needed for the desired number of inodes, and any
 excess space will be utilized to store more inodes.

5.2.1.
 Determining MGT Space Requirements

Less than 100 MB of space is typically required for the MGT.
 The size is determined by the total number of servers in the Lustre
 file system cluster(s) that are managed by the MGS.

5.2.2.
 Determining MDT Space Requirements

When calculating the MDT size, the important factor to consider
 is the number of files to be stored in the file system, which depends on
 at least 2 KiB per inode of usable space on the MDT. Since MDTs typically
 use RAID-1+0 mirroring, the total storage needed will be double this.

Please note that the actual used space per MDT depends on the number
 of files per directory, the number of stripes per file, whether files
 have ACLs or user xattrs, and the number of hard links per file. The
 storage required for Lustre file system metadata is typically 1-2
 percent of the total file system capacity depending upon file size.
 If the Chapter 20, Data on MDT (DoM) feature is in use for Lustre
 2.11 or later, MDT space should typically be 5 percent or more of the
 total space, depending on the distribution of small files within the
 filesystem and the lod.*.dom_stripesize limit on
 the MDT and file layout used.
For ZFS-based MDT filesystems, the number of inodes created on
 the MDT and OST is dynamic, so there is less need to determine the
 number of inodes in advance, though there still needs to be some thought
 given to the total MDT space compared to the total filesystem size.
For example, if the average file size is 5 MiB and you have
 100 TiB of usable OST space, then you can calculate the
 minimum total number of inodes for MDTs and OSTs
 as follows:
(500 TB * 1000000 MB/TB) / 5 MB/inode = 100M inodes

It is recommended that the MDT(s) have at least twice the minimum
 number of inodes to allow for future expansion and allow for an average
 file size smaller than expected. Thus, the minimum space for ldiskfs
 MDT(s) should be approximately:

2 KiB/inode x 100 million inodes x 2 = 400 GiB ldiskfs MDT

For details about formatting options for ldiskfs MDT and OST file
 systems, see Section 5.3.1, “Setting Formatting Options for an ldiskfs MDT”.
Note
If the median file size is very small, 4 KB for example, the
 MDT would use as much space for each file as the space used on the OST,
 so the use of Data-on-MDT is strongly recommended in that case.
 The MDT space per inode should be increased correspondingly to
 account for the extra data space usage for each inode:

6 KiB/inode x 100 million inodes x 2 = 1200 GiB ldiskfs MDT

Note
If the MDT has too few inodes, this can cause the space on the
 OSTs to be inaccessible since no new files can be created. In this
 case, the lfs df -i and df -i
 commands will limit the number of available inodes reported for the
 filesystem to match the total number of available objects on the OSTs.
 Be sure to determine the appropriate MDT size needed to support the
 filesystem before formatting. It is possible to increase the
 number of inodes after the file system is formatted, depending on the
 storage. For ldiskfs MDT filesystems the resize2fs
 tool can be used if the underlying block device is on a LVM logical
 volume and the underlying logical volume size can be increased.
 For ZFS new (mirrored) VDEVs can be added to the MDT pool to increase
 the total space available for inode storage.
 Inodes will be added approximately in proportion to space added.

Introduced in Lustre 2.4Note
Note that the number of total and free inodes reported by
 lfs df -i for ZFS MDTs and OSTs is estimated based
 on the current average space used per inode. When a ZFS filesystem is
 first formatted, this free inode estimate will be very conservative
 (low) due to the high ratio of directories to regular files created for
 internal Lustre metadata storage, but this estimate will improve as
 more files are created by regular users and the average file size will
 better reflect actual site usage.

Introduced in Lustre 2.4Note
Starting in release 2.4, using the DNE remote directory feature
 it is possible to increase the total number of inodes of a Lustre
 filesystem, as well as increasing the aggregate metadata performance,
 by configuring additional MDTs into the filesystem, see
 Section 14.7, “Adding a New MDT to a Lustre File System” for details.

5.2.3.
 Determining OST Space Requirements

For the OST, the amount of space taken by each object depends on
 the usage pattern of the users/applications running on the system. The
 Lustre software defaults to a conservative estimate for the average
 object size (between 64 KiB per object for 10 GiB OSTs, and 1 MiB per
 object for 16 TiB and larger OSTs). If you are confident that the average
 file size for your applications will be different than this, you can
 specify a different average file size (number of total inodes for a given
 OST size) to reduce file system overhead and minimize file system check
 time.
 See Section 5.3.2, “Setting Formatting Options for an ldiskfs OST” for more details.

5.3.

 Setting ldiskfs File System Formatting Options

By default, the mkfs.lustre utility applies these
 options to the Lustre backing file system used to store data and metadata
 in order to enhance Lustre file system performance and scalability. These
 options include:
	flex_bg - When the flag is set to enable
 this flexible-block-groups feature, block and inode bitmaps for
 multiple groups are aggregated to minimize seeking when bitmaps
 are read or written and to reduce read/modify/write operations
 on typical RAID storage (with 1 MiB RAID stripe widths). This flag
 is enabled on both OST and MDT file systems. On MDT file systems
 the flex_bg factor is left at the default value
 of 16. On OSTs, the flex_bg factor is set
 to 256 to allow all of the block or inode bitmaps in a single
 flex_bg to be read or written in a single
 1MiB I/O typical for RAID storage.

	huge_file - Setting this flag allows
 files on OSTs to be larger than 2 TiB in size.

	lazy_journal_init - This extended option
 is enabled to prevent a full overwrite to zero out the large
 journal that is allocated by default in a Lustre file system
 (up to 400 MiB for OSTs, up to 4GiB for MDTs), to reduce the
 formatting time.

To override the default formatting options, use arguments to
 mkfs.lustre to pass formatting options to the backing file system:
--mkfsoptions='backing fs options'
For other mkfs.lustre options, see the Linux man page for
 mke2fs(8).
5.3.1. Setting Formatting Options for an ldiskfs MDT

The number of inodes on the MDT is determined at format time
 based on the total size of the file system to be created. The default
 bytes-per-inode ratio ("inode ratio")
 for an ldiskfs MDT is optimized at one inode for every 2048 bytes of file
 system space.
This setting takes into account the space needed for additional
 ldiskfs filesystem-wide metadata, such as the journal (up to 4 GB),
 bitmaps, and directories, as well as files that Lustre uses internally
 to maintain cluster consistency. There is additional per-file metadata
 such as file layout for files with a large number of stripes, Access
 Control Lists (ACLs), and user extended attributes.
Introduced in Lustre 2.11 Starting in Lustre 2.11, the Chapter 20, Data on MDT (DoM) feature allows storing small files on the MDT
 to take advantage of high-performance flash storage, as well as reduce
 space and network overhead. If you are planning to use the DoM feature
 with an ldiskfs MDT, it is recommended to increase
 the inode ratio to have enough space on the MDT for small files.

It is possible to change the recommended 2048 bytes
 per inode for an ldiskfs MDT when it is first formatted by adding the
 --mkfsoptions="-i bytes-per-inode" option to
 mkfs.lustre. Decreasing the inode ratio tunable
 bytes-per-inode will create more inodes for a given
 MDT size, but will leave less space for extra per-file metadata and is
 not recommended. The inode ratio must always be strictly larger than
 the MDT inode size, which is 1024 bytes by default. It is recommended
 to use an inode ratio at least 1024 bytes larger than the inode size to
 ensure the MDT does not run out of space. Increasing the inode ratio
 to at least hold the most common file size (e.g. 5120 or 66560 bytes if
 4KB or 64KB files are widely used) is recommended for DoM.
The size of the inode may be changed by adding the
 --stripe-count-hint=N to have
 mkfs.lustre automatically calculate a reasonable
 inode size based on the default stripe count that will be used by the
 filesystem, or directly by specifying the
 --mkfsoptions="-I inode-size" option. Increasing
 the inode size will provide more space in the inode for a larger Lustre
 file layout, ACLs, user and system extended attributes, SELinux and
 other security labels, and other internal metadata. However, if these
 features or other in-inode xattrs are not needed, the larger inode size
 will hurt metadata performance as 2x, 4x, or 8x as much data would be
 read or written for each MDT inode access.

5.3.2. Setting Formatting Options for an ldiskfs OST

When formatting an OST file system, it can be beneficial
 to take local file system usage into account. When doing so, try to
 reduce the number of inodes on each OST, while keeping enough margin
 for potential variations in future usage. This helps reduce the format
 and file system check time and makes more space available for data.
The table below shows the default
 bytes-per-inode ratio ("inode ratio")
 used for OSTs of various sizes when they are formatted.

Table 5.1. Default Inode Ratios Used for Newly Formatted OSTs
	
 LUN/OST size

 	
 Default Inode ratio

 	
 Total inodes

	
 under 10GiB

 	
 1 inode/16KiB

 	
 640 - 655k

	
 10GiB - 1TiB

 	
 1 inode/68KiB

 	
 153k - 15.7M

	
 1TiB - 8TiB

 	
 1 inode/256KiB

 	
 4.2M - 33.6M

	
 over 8TiB

 	
 1 inode/1MiB

 	
 8.4M - 268M

In environments with few small files, the default inode ratio
 may result in far too many inodes for the average file size. In this
 case, performance can be improved by increasing the number of
 bytes-per-inode. To set the inode
 ratio, use the --mkfsoptions="-i bytes-per-inode"
 argument to mkfs.lustre to specify the expected
 average (mean) size of OST objects. For example, to create an OST
 with an expected average object size of 8 MiB run:

[oss#] mkfs.lustre --ost --mkfsoptions="-i $((8192 * 1024))" ...

Note
OSTs formatted with ldiskfs are limited to a maximum of
 320 million to 1 billion objects. Specifying a very small
 bytes-per-inode ratio for a large OST that causes this limit to be
 exceeded can cause either premature out-of-space errors and prevent
 the full OST space from being used, or will waste space and slow down
 e2fsck more than necessary. The default inode ratios are chosen to
 ensure that the total number of inodes remain below this limit.

Note
File system check time on OSTs is affected by a number of
 variables in addition to the number of inodes, including the size of
 the file system, the number of allocated blocks, the distribution of
 allocated blocks on the disk, disk speed, CPU speed, and the amount
 of RAM on the server. Reasonable file system check times for valid
 filesystems are 5-30 minutes per TiB, but may increase significantly
 if substantial errors are detected and need to be required.

For more details about formatting MDT and OST file systems,
 see Section 6.4, “
 Formatting Options for ldiskfs RAID Devices”.

5.4. File and File System Limits

Table 5.2, “File and file system limits” describes
 current known limits of Lustre. These limits are imposed by either
 the Lustre architecture or the Linux virtual file system (VFS) and
 virtual memory subsystems. In a few cases, a limit is defined within
 the code and can be changed by re-compiling the Lustre software.
 Instructions to install from source code are beyond the scope of this
 document, and can be found elsewhere online. In these cases, the
 indicated limit was used for testing of the Lustre software.
Table 5.2. File and file system limits
	
 Limit

 	
 Value

 	
 Description

	
 Maximum number of MDTs

 	
 Introduced in Lustre 2.4256

 	
 The Lustre software release 2.3 and earlier allows a
 maximum of 1 MDT per file system, but a single MDS can host
 multiple MDTs, each one for a separate file system.

 Introduced in Lustre 2.4The Lustre software release 2.4 and later
 requires one MDT for the filesystem root. At least 255 more
 MDTs can be added to the filesystem and attached into
 the namespace with DNE remote or striped directories.

	
 Maximum number of OSTs

 	
 8150

 	
 The maximum number of OSTs is a constant that can be
 changed at compile time. Lustre file systems with up to
 4000 OSTs have been tested. Multiple OST file systems can
 be configured on a single OSS node.

	
 Maximum OST size

 	
 256TiB (ldiskfs), 256TiB (ZFS)

 	
 This is not a hard limit. Larger
 OSTs are possible but most production systems do not
 typically go beyond the stated limit per OST because Lustre
 can add capacity and performance with additional OSTs, and
 having more OSTs improves aggregate I/O performance,
 minimizes contention, and allows parallel recovery (e2fsck
 for ldiskfs OSTs, scrub for ZFS OSTs).

 With 32-bit kernels, due to page cache limits, 16TB is the
 maximum block device size, which in turn applies to the
 size of OST. It is strongly recommended to run Lustre
 clients and servers with 64-bit kernels.

	
 Maximum number of clients

 	
 131072

 	
 The maximum number of clients is a constant that can
 be changed at compile time. Up to 30000 clients have been
 used in production accessing a single filesystem.

	
 Maximum size of a single file system

 	
 at least 1EiB

 	
 Each OST can have a file system up to the
 Maximum OST size limit, and the Maximum number of OSTs
 can be combined into a single filesystem.

	
 Maximum stripe count

 	
 2000

 	
 This limit is imposed by the size of the layout that
 needs to be stored on disk and sent in RPC requests, but is
 not a hard limit of the protocol. The number of OSTs in the
 filesystem can exceed the stripe count, but this limits the
 number of OSTs across which a single file can be striped.

	
 Maximum stripe size

 	
 < 4 GiB

 	
 The amount of data written to each object before moving
 on to next object.

	
 Minimum stripe size

 	
 64 KiB

 	
 Due to the use of 64 KiB PAGE_SIZE on some CPU
 architectures such as ARM and POWER, the minimum stripe
 size is 64 KiB so that a single page is not split over
 multiple servers.

	
 Maximum object size

 	
 16TiB (ldiskfs), 256TiB (ZFS)

 	
 The amount of data that can be stored in a single object.
 An object corresponds to a stripe. The ldiskfs limit of 16 TB
 for a single object applies. For ZFS the limit is the size of
 the underlying OST. Files can consist of up to 2000 stripes,
 each stripe can be up to the maximum object size.

	
 Maximum file size

 	
 16 TiB on 32-bit systems

 31.25 PiB on 64-bit ldiskfs systems,
 8EiB on 64-bit ZFS systems

 	
 Individual files have a hard limit of nearly 16 TiB on
 32-bit systems imposed by the kernel memory subsystem. On
 64-bit systems this limit does not exist. Hence, files can
 be 2^63 bits (8EiB) in size if the backing filesystem can
 support large enough objects.

 A single file can have a maximum of 2000 stripes, which
 gives an upper single file limit of 31.25 PiB for 64-bit
 ldiskfs systems. The actual amount of data that can be stored
 in a file depends upon the amount of free space in each OST
 on which the file is striped.

	
 Maximum number of files or subdirectories in a single directory

 	
 10 million files (ldiskfs), 2^48 (ZFS)

 	
 The Lustre software uses the ldiskfs hashed directory
 code, which has a limit of about 10 million files, depending
 on the length of the file name. The limit on subdirectories
 is the same as the limit on regular files.

 Introduced in Lustre 2.8Note
Starting in the 2.8 release it is
 possible to exceed this limit by striping a single directory
 over multiple MDTs with the lfs mkdir -c
 command, which increases the single directory limit by a
 factor of the number of directory stripes used.

 Lustre file systems are tested with ten million files
 in a single directory.

	
 Maximum number of files in the file system

 	
 4 billion (ldiskfs), 256 trillion (ZFS)

 Introduced in Lustre 2.4up to 256 times the per-MDT limit

 	
 The ldiskfs filesystem imposes an upper limit of
 4 billion inodes per filesystem. By default, the MDT
 filesystem is formatted with one inode per 2KB of space,
 meaning 512 million inodes per TiB of MDT space. This can be
 increased initially at the time of MDT filesystem creation.
 For more information, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.

 Introduced in Lustre 2.4The ZFS filesystem dynamically allocates
 inodes and does not have a fixed ratio of inodes per unit of MDT
 space, but consumes approximately 4KiB of mirrored space per
 inode, depending on the configuration.

 Introduced in Lustre 2.4Each additional MDT can hold up to the
 above maximum number of additional files, depending on
 available space and the distribution directories and files
 in the filesystem.

	
 Maximum length of a filename

 	
 255 bytes (filename)

 	
 This limit is 255 bytes for a single filename, the
 same as the limit in the underlying filesystems.

	
 Maximum length of a pathname

 	
 4096 bytes (pathname)

 	
 The Linux VFS imposes a full pathname length of 4096 bytes.

	
 Maximum number of open files for a Lustre file system

 	
 No limit

 	
 The Lustre software does not impose a maximum for the number
 of open files, but the practical limit depends on the amount of
 RAM on the MDS. No "tables" for open files exist on the
 MDS, as they are only linked in a list to a given client's
 export. Each client process probably has a limit of several
 thousands of open files which depends on the ulimit.

Note
By default for ldiskfs MDTs the maximum stripe count for a
 single file is limited to 160 OSTs. In order to
 increase the maximum file stripe count, use
 --mkfsoptions="-O ea_inode" when formatting the MDT,
 or use tune2fs -O ea_inode to enable it after the
 MDT has been formatted.

5.5. Determining Memory Requirements

This section describes the memory requirements for each Lustre file system component.
5.5.1.

 Client Memory Requirements

A minimum of 2 GB RAM is recommended for clients.

5.5.2. MDS Memory Requirements

MDS memory requirements are determined by the following factors:
	Number of clients

	Size of the directories

	Load placed on server

The amount of memory used by the MDS is a function of how many clients are on the system, and how many files they are using in their working set. This is driven, primarily, by the number of locks a client can hold at one time. The number of locks held by clients varies by load and memory availability on the server. Interactive clients can hold in excess of 10,000 locks at times. On the MDS, memory usage is approximately 2 KB per file, including the Lustre distributed lock manager (DLM) lock and kernel data structures for the files currently in use. Having file data in cache can improve metadata performance by a factor of 10x or more compared to reading it from disk.
MDS memory requirements include:
	File system metadata : A reasonable amount of RAM needs to be available for file system metadata. While no hard limit can be placed on the amount of file system metadata, if more RAM is available, then the disk I/O is needed less often to retrieve the metadata.

	Network transport : If you are using TCP or other network transport that uses system memory for send/receive buffers, this memory requirement must also be taken into consideration.

	Journal size : By default, the journal size is 400 MB for each Lustre ldiskfs file system. This can pin up to an equal amount of RAM on the MDS node per file system.

	Failover configuration : If the MDS node will be used for failover from another node, then the RAM for each journal should be doubled, so the backup server can handle the additional load if the primary server fails.

5.5.2.1. Calculating MDS Memory Requirements

By default, 400 MB are used for the file system journal. Additional RAM is used for caching file data for the larger working set, which is not actively in use by clients but should be kept "hot" for improved access times. Approximately 1.5 KB per file is needed to keep a file in cache without a lock.
For example, for a single MDT on an MDS with 1,000 clients, 16 interactive nodes, and a 2 million file working set (of which 400,000 files are cached on the clients):
Operating system overhead = 512 MB
File system journal = 400 MB
1000 * 4-core clients * 100 files/core * 2kB = 800 MB
16 interactive clients * 10,000 files * 2kB = 320 MB
1,600,000 file extra working set * 1.5kB/file = 2400 MB

Thus, the minimum requirement for a system with this configuration is at least 4 GB of RAM. However, additional memory may significantly improve performance.
For directories containing 1 million or more files, more memory may provide a significant benefit. For example, in an environment where clients randomly access one of 10 million files, having extra memory for the cache significantly improves performance.

5.5.3. OSS Memory Requirements

When planning the hardware for an OSS node, consider the memory usage of several
 components in the Lustre file system (i.e., journal, service threads, file system metadata,
 etc.). Also, consider the effect of the OSS read cache feature, which consumes memory as it
 caches data on the OSS node.
In addition to the MDS memory requirements mentioned in Section 5.2.2, “
 Determining MDT Space Requirements”, the OSS requirements include:
	Service threads : The service threads on the OSS node pre-allocate a 4 MB I/O buffer for each ost_io service thread, so these buffers do not need to be allocated and freed for each I/O request.

	OSS read cache : OSS read cache provides read-only
 caching of data on an OSS, using the regular Linux page cache to store the data. Just
 like caching from a regular file system in the Linux operating system, OSS read cache
 uses as much physical memory as is available.

The same calculation applies to files accessed from the OSS as for the MDS, but the load is distributed over many more OSSs nodes, so the amount of memory required for locks, inode cache, etc. listed under MDS is spread out over the OSS nodes.
Because of these memory requirements, the following calculations should be taken as determining the absolute minimum RAM required in an OSS node.
5.5.3.1. Calculating OSS Memory Requirements

The minimum recommended RAM size for an OSS with two OSTs is computed below:
Ethernet/TCP send/receive buffers (4 MB * 512 threads) = 2048 MB
400 MB journal size * 2 OST devices = 800 MB
1.5 MB read/write per OST IO thread * 512 threads = 768 MB
600 MB file system read cache * 2 OSTs = 1200 MB
1000 * 4-core clients * 100 files/core * 2kB = 800MB
16 interactive clients * 10,000 files * 2kB = 320MB
1,600,000 file extra working set * 1.5kB/file = 2400MB
 DLM locks + file system metadata TOTAL = 3520MB
Per OSS DLM locks + file system metadata = 3520MB/6 OSS = 600MB (approx.)
Per OSS RAM minimum requirement = 4096MB (approx.)

This consumes about 1,400 MB just for the pre-allocated buffers, and an additional 2 GB for minimal file system and kernel usage. Therefore, for a non-failover configuration, the minimum RAM would be 4 GB for an OSS node with two OSTs. Adding additional memory on the OSS will improve the performance of reading smaller, frequently-accessed files.
For a failover configuration, the minimum RAM would be at least 6 GB. For 4 OSTs on each OSS in a failover configuration 10GB of RAM is reasonable. When the OSS is not handling any failed-over OSTs the extra RAM will be used as a read cache.
As a reasonable rule of thumb, about 2 GB of base memory plus 1 GB per OST can be used. In failover configurations, about 2 GB per OST is needed.

5.6. Implementing Networks To Be Used by the Lustre File System

As a high performance file system, the Lustre file system places heavy loads on networks.
 Thus, a network interface in each Lustre server and client is commonly dedicated to Lustre
 file system traffic. This is often a dedicated TCP/IP subnet, although other network hardware
 can also be used.
A typical Lustre file system implementation may include the following:
	A high-performance backend network for the Lustre servers, typically an InfiniBand (IB) network.

	A larger client network.

	Lustre routers to connect the two networks.

Lustre networks and routing are configured and managed by specifying parameters to the
 Lustre Networking (lnet) module in
 /etc/modprobe.d/lustre.conf.
To prepare to configure Lustre networking, complete the following steps:
	Identify all machines that will be running Lustre software and
 the network interfaces they will use to run Lustre file system traffic. These machines
 will form the Lustre network .
A network is a group of nodes that communicate directly with one another. The Lustre
 software includes Lustre network drivers (LNDs) to support a variety of network types and
 hardware (see Chapter 2, Understanding Lustre Networking (LNet) for a complete list). The
 standard rules for specifying networks applies to Lustre networks. For example, two TCP
 networks on two different subnets (tcp0 and tcp1)
 are considered to be two different Lustre networks.

	If routing is needed, identify the nodes to be used to route traffic between networks.
If you are using multiple network types, then you will need a router. Any node with
 appropriate interfaces can route Lustre networking (LNet) traffic between different
 network hardware types or topologies --the node may be a server, a client, or a standalone
 router. LNet can route messages between different network types (such as
 TCP-to-InfiniBand) or across different topologies (such as bridging two InfiniBand or
 TCP/IP networks). Routing will be configured in Chapter 9, Configuring Lustre Networking (LNet).

	Identify the network interfaces to include
	in or exclude from LNet.
If not explicitly specified, LNet uses either the first available
	interface or a pre-defined default for a given network type. Interfaces
	that LNet should not use (such as an administrative network or
	IP-over-IB), can be excluded.
Network interfaces to be used or excluded will be specified using
	the lnet kernel module parameters networks and
	ip2nets as described in
	Chapter 9, Configuring Lustre Networking (LNet).

	To ease the setup of networks with complex
	network configurations, determine a cluster-wide module configuration.
	
For large clusters, you can configure the networking setup for
	all nodes by using a single, unified set of parameters in the
	lustre.conf file on each node. Cluster-wide
	configuration is described in Chapter 9, Configuring Lustre Networking (LNet).

Note
We recommend that you use 'dotted-quad' notation for IP addresses rather than host names to make it easier to read debug logs and debug configurations with multiple interfaces.

Chapter 6. Configuring Storage on a Lustre File System

This chapter describes best practices for storage selection and file system options to optimize performance on RAID, and includes the following sections:
	
 Section 6.1, “

 Selecting Storage for the MDT and OSTs”

	
 Section 6.2, “Reliability Best Practices”

	
 Section 6.3, “Performance Tradeoffs”

	
 Section 6.4, “
 Formatting Options for ldiskfs RAID Devices”

	
 Section 6.5, “Connecting a SAN to a Lustre File System”

Note
It is strongly recommended that storage used in a Lustre file system
 be configured with hardware RAID. The Lustre software does not support redundancy
 at the file system level and RAID is required to protect against disk failure.

6.1.

 Selecting Storage for the MDT and OSTs

The Lustre architecture allows the use of any kind of block device as backend storage. The characteristics of such devices, particularly in the case of failures, vary significantly and have an impact on configuration choices.
This section describes issues and recommendations regarding backend storage.
6.1.1. Metadata Target (MDT)

I/O on the MDT is typically mostly reads and writes of small amounts of data. For this reason, we recommend that you use RAID 1 for MDT storage. If you require more capacity for an MDT than one disk provides, we recommend RAID 1 + 0 or RAID 10.

6.1.2. Object Storage Server (OST)

A quick calculation makes it clear that without further redundancy, RAID 6 is required for large clusters and RAID 5 is not acceptable:
For a 2 PB file system (2,000 disks of 1 TB capacity) assume the mean time to failure (MTTF) of a disk is about 1,000 days. This means that the expected failure rate is 2000/1000 = 2 disks per day. Repair time at 10% of disk bandwidth is 1000 GB at 10MB/sec = 100,000 sec, or about 1 day.
For a RAID 5 stripe that is 10 disks wide, during 1 day of rebuilding, the chance that a second disk in the same array will fail is about 9/1000 or about 1% per day. After 50 days, you have a 50% chance of a double failure in a RAID 5 array leading to data loss.
Therefore, RAID 6 or another double parity algorithm is needed to provide sufficient redundancy for OST storage.

For better performance, we recommend that you create RAID sets with 4 or 8 data disks plus one or two parity disks. Using larger RAID sets will negatively impact performance compared to having multiple independent RAID sets.
To maximize performance for small I/O request sizes, storage configured as RAID 1+0 can yield much better results but will increase cost or reduce capacity.

6.2. Reliability Best Practices

RAID monitoring software is recommended to quickly detect faulty disks and allow them to be replaced to avoid double failures and data loss. Hot spare disks are recommended so that rebuilds happen without delays.
Backups of the metadata file systems are recommended. For details, see Chapter 18, Backing Up and Restoring a File
 System.

6.3. Performance Tradeoffs

A writeback cache can dramatically increase write performance on many types of RAID arrays if the writes are not done at full stripe width. Unfortunately, unless the RAID array has battery-backed cache (a feature only found in some higher-priced hardware RAID arrays), interrupting the power to the array may result in out-of-sequence writes or corruption of RAID parity and future data loss.
If writeback cache is enabled, a file system check is required after the array loses power. Data may also be lost because of this.
Therefore, we recommend against the use of writeback cache when data integrity is critical. You should carefully consider whether the benefits of using writeback cache outweigh the risks.

6.4.
 Formatting Options for ldiskfs RAID Devices

When formatting an ldiskfs file system on a RAID device, it can be
 beneficial to ensure that I/O requests are aligned with the underlying
 RAID geometry. This ensures that Lustre RPCs do not generate unnecessary
 disk operations which may reduce performance dramatically. Use the
 --mkfsoptions parameter to specify additional parameters
 when formatting the OST or MDT.
For RAID 5, RAID 6, or RAID 1+0 storage, specifying the following
 option to the --mkfsoptions parameter option improves
 the layout of the file system metadata, ensuring that no single disk
 contains all of the allocation bitmaps:
-E stride = chunk_blocks
The chunk_blocks
 variable is in units of 4096-byte blocks and represents the amount of
 contiguous data written to a single disk before moving to the next disk.
 This is alternately referred to as the RAID stripe size. This is
 applicable to both MDT and OST file systems.
For more information on how to override the defaults while formatting
 MDT or OST file systems, see Section 5.3, “

 Setting ldiskfs File System Formatting Options
 ”.
6.4.1. Computing file system parameters for mkfs

For best results, use RAID 5 with 5 or 9 disks or RAID 6 with 6 or 10 disks, each on a different controller. The stripe width is the optimal minimum I/O size. Ideally, the RAID configuration should allow 1 MB Lustre RPCs to fit evenly on a single RAID stripe without an expensive read-modify-write cycle. Use this formula to determine the
 stripe_width, where
 number_of_data_disks
 does not include the RAID parity disks (1 for RAID 5 and 2 for RAID 6):
stripe_width_blocks = chunk_blocks * number_of_data_disks = 1 MB
If the RAID configuration does not allow
 chunk_blocks
 to fit evenly into 1 MB, select
 stripe_width_blocks,
 such that is close to 1 MB, but not larger.
The
 stripe_width_blocks
 value must equal
 chunk_blocks * number_of_data_disks.
 Specifying the
 stripe_width_blocks
 parameter is only relevant for RAID 5 or RAID 6, and is not needed for RAID 1 plus 0.
Run --reformat on the file system device (/dev/sdc), specifying the RAID geometry to the underlying ldiskfs file system, where:
--mkfsoptions "other_options -E stride=chunk_blocks, stripe_width=stripe_width_blocks"
A RAID 6 configuration with 6 disks has 4 data and 2 parity disks. The
 chunk_blocks
 <= 1024KB/4 = 256KB.

Because the number of data disks is equal to the power of 2, the stripe width is equal to 1 MB.
--mkfsoptions "other_options -E stride=chunk_blocks, stripe_width=stripe_width_blocks"...

6.4.2. Choosing Parameters for an External Journal

If you have configured a RAID array and use it directly as an OST, it contains both data and metadata. For better performance, we recommend putting the OST journal on a separate device, by creating a small RAID 1 array and using it as an external journal for the OST.
In a Lustre file system, the default journal size is 400 MB. A journal size of up to 1
 GB has shown increased performance but diminishing returns are seen for larger journals.
 Additionally, a copy of the journal is kept in RAM. Therefore, make sure you have enough
 memory available to hold copies of all the journals.
The file system journal options are specified to mkfs.lustre using
 the --mkfsoptions parameter. For example:
--mkfsoptions "other_options -j -J device=/dev/mdJ"
To create an external journal, perform these steps for each OST on the OSS:
	Create a 400 MB (or larger) journal partition (RAID 1 is recommended).
In this example, /dev/sdb is a RAID 1 device.

	Create a journal device on the partition. Run:
oss# mke2fs -b 4096 -O journal_dev /dev/sdb journal_size
The value of
 journal_size
 is specified in units of 4096-byte blocks. For example, 262144 for a 1 GB journal size.

	Create the OST.
In this example, /dev/sdc is the RAID 6 device to be used as the OST, run:
[oss#] mkfs.lustre --ost ... \
--mkfsoptions="-J device=/dev/sdb1" /dev/sdc

	Mount the OST as usual.

6.5. Connecting a SAN to a Lustre File System

Depending on your cluster size and workload, you may want to connect a SAN to a Lustre file system. Before making this connection, consider the following:
	In many SAN file systems, clients allocate and lock blocks or inodes individually as
 they are updated. The design of the Lustre file system avoids the high contention that
 some of these blocks and inodes may have.

	The Lustre file system is highly scalable and can have a very large number of clients.
 SAN switches do not scale to a large number of nodes, and the cost per port of a SAN is
 generally higher than other networking.

	File systems that allow direct-to-SAN access from the clients have a security risk because clients can potentially read any data on the SAN disks, and misbehaving clients can corrupt the file system for many reasons like improper file system, network, or other kernel software, bad cabling, bad memory, and so on. The risk increases with increase in the number of clients directly accessing the storage.

Chapter 7. Setting Up Network Interface Bonding

This chapter describes how to use multiple network interfaces in parallel to increase bandwidth and/or redundancy. Topics include:
	
 Section 7.1, “Network Interface Bonding Overview”

	
 Section 7.2, “Requirements”

	
 Section 7.3, “Bonding Module Parameters”

	
 Section 7.4, “Setting Up Bonding”

	
 Section 7.5, “Configuring a Lustre File System with Bonding”

	
 Section 7.6, “Bonding References”

Note
Using network interface bonding is optional.

7.1. Network Interface Bonding Overview

Bonding, also known as link aggregation, trunking and port trunking, is a method of aggregating multiple physical network links into a single logical link for increased bandwidth.
Several different types of bonding are available in the Linux distribution. All these
 types are referred to as 'modes', and use the bonding kernel module.
Modes 0 to 3 allow load balancing and fault tolerance by using multiple interfaces. Mode 4 aggregates a group of interfaces into a single virtual interface where all members of the group share the same speed and duplex settings. This mode is described under IEEE spec 802.3ad, and it is referred to as either 'mode 4' or '802.3ad.'

7.2. Requirements

The most basic requirement for successful bonding is that both endpoints of the connection must be capable of bonding. In a normal case, the non-server endpoint is a switch. (Two systems connected via crossover cables can also use bonding.) Any switch used must explicitly handle 802.3ad Dynamic Link Aggregation.
The kernel must also be configured with bonding. All supported Lustre kernels have bonding functionality. The network driver for the interfaces to be bonded must have the ethtool functionality to determine slave speed and duplex settings. All recent network drivers implement it.
To verify that your interface works with ethtool, run:
which ethtool
/sbin/ethtool

ethtool eth0
Settings for eth0:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 100Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 1
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000001 (1)
 Link detected: yes

ethtool eth1

Settings for eth1:
 Supported ports: [TP MII]
 Supported link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Supports auto-negotiation: Yes
 Advertised link modes: 10baseT/Half 10baseT/Full
 100baseT/Half 100baseT/Full
 Advertised auto-negotiation: Yes
 Speed: 100Mb/s
 Duplex: Full
 Port: MII
 PHYAD: 32
 Transceiver: internal
 Auto-negotiation: on
 Supports Wake-on: pumbg
 Wake-on: d
 Current message level: 0x00000007 (7)
 Link detected: yes
 To quickly check whether your kernel supports bonding, run:
 # grep ifenslave /sbin/ifup
 # which ifenslave
 /sbin/ifenslave

7.3. Bonding Module Parameters

Bonding module parameters control various aspects of bonding.
Outgoing traffic is mapped across the slave interfaces according to the transmit hash
 policy. We recommend that you set the xmit_hash_policy option to the
 layer3+4 option for bonding. This policy uses upper layer protocol information if available to
 generate the hash. This allows traffic to a particular network peer to span multiple slaves,
 although a single connection does not span multiple slaves.
$ xmit_hash_policy=layer3+4
The miimon option enables users to monitor the link status. (The
 parameter is a time interval in milliseconds.) It makes an interface failure transparent to
 avoid serious network degradation during link failures. A reasonable default setting is 100
 milliseconds; run:
$ miimon=100
For a busy network, increase the timeout.

7.4. Setting Up Bonding

To set up bonding:
	Create a virtual 'bond' interface by creating a configuration file:
vi /etc/sysconfig/network-scripts/ifcfg-bond0

	Append the following lines to the file.
DEVICE=bond0
IPADDR=192.168.10.79 # Use the free IP Address of your network
NETWORK=192.168.10.0
NETMASK=255.255.255.0
USERCTL=no
BOOTPROTO=none
ONBOOT=yes

	Attach one or more slave interfaces to the bond interface. Modify the eth0 and eth1 configuration files (using a VI text editor).
	Use the VI text editor to open the eth0 configuration file.
vi /etc/sysconfig/network-scripts/ifcfg-eth0

	Modify/append the eth0 file as follows:
DEVICE=eth0
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

	Use the VI text editor to open the eth1 configuration file.
vi /etc/sysconfig/network-scripts/ifcfg-eth1

	Modify/append the eth1 file as follows:
DEVICE=eth1
USERCTL=no
ONBOOT=yes
MASTER=bond0
SLAVE=yes
BOOTPROTO=none

	Set up the bond interface and its options in /etc/modprobe.d/bond.conf. Start the slave interfaces by your normal network method.
vi /etc/modprobe.d/bond.conf

	Append the following lines to the file.
alias bond0 bonding
options bond0 mode=balance-alb miimon=100

	Load the bonding module.
modprobe bonding
ifconfig bond0 up
ifenslave bond0 eth0 eth1

	Start/restart the slave interfaces (using your normal network method).
Note
You must modprobe the bonding module for each bonded interface. If you wish to create bond0 and bond1, two entries in bond.conf file are required.

The examples below are from systems running Red Hat Enterprise Linux. For setup use:
 /etc/sysconfig/networking-scripts/ifcfg-* The website referenced
 below includes detailed instructions for other configuration methods, instructions to use
 DHCP with bonding, and other setup details. We strongly recommend you use this
 website.
http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding

	Check /proc/net/bonding to determine status on bonding. There should be a file there for each bond interface.
cat /proc/net/bonding/bond0
Ethernet Channel Bonding Driver: v3.0.3 (March 23, 2006)

Bonding Mode: load balancing (round-robin)
MII Status: up
MII Polling Interval (ms): 0
Up Delay (ms): 0
Down Delay (ms): 0

Slave Interface: eth0
MII Status: up
Link Failure Count: 0
Permanent HW addr: 4c:00:10:ac:61:e0

Slave Interface: eth1
MII Status: up
Link Failure Count: 0
Permanent HW addr: 00:14:2a:7c:40:1d

	Use ethtool or ifconfig to check the interface state. ifconfig lists the first bonded interface as 'bond0.'
ifconfig
bond0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0
 inet addr:192.168.10.79 Bcast:192.168.10.255 \ Mask:255.255.255.0
 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
 UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
 RX packets:3091 errors:0 dropped:0 overruns:0 frame:0
 TX packets:880 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:0
 RX bytes:314203 (306.8 KiB) TX bytes:129834 (126.7 KiB)

eth0 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0
 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:1581 errors:0 dropped:0 overruns:0 frame:0
 TX packets:448 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:162084 (158.2 KiB) TX bytes:67245 (65.6 KiB)
 Interrupt:193 Base address:0x8c00

eth1 Link encap:Ethernet HWaddr 4C:00:10:AC:61:E0
 inet6 addr: fe80::4e00:10ff:feac:61e0/64 Scope:Link
 UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
 RX packets:1513 errors:0 dropped:0 overruns:0 frame:0
 TX packets:444 errors:0 dropped:0 overruns:0 carrier:0
 collisions:0 txqueuelen:1000
 RX bytes:152299 (148.7 KiB) TX bytes:64517 (63.0 KiB)
 Interrupt:185 Base address:0x6000

7.4.1. Examples

This is an example showing bond.conf entries for bonding Ethernet interfaces eth1 and eth2 to bond0:
cat /etc/modprobe.d/bond.conf
alias eth0 8139too
alias eth1 via-rhine
alias bond0 bonding
options bond0 mode=balance-alb miimon=100

cat /etc/sysconfig/network-scripts/ifcfg-bond0
DEVICE=bond0
BOOTPROTO=none
NETMASK=255.255.255.0
IPADDR=192.168.10.79 # (Assign here the IP of the bonded interface.)
ONBOOT=yes
USERCTL=no

ifcfg-ethx
cat /etc/sysconfig/network-scripts/ifcfg-eth0
TYPE=Ethernet
DEVICE=eth0
HWADDR=4c:00:10:ac:61:e0
BOOTPROTO=none
ONBOOT=yes
USERCTL=no
IPV6INIT=no
PEERDNS=yes
MASTER=bond0
SLAVE=yes

In the following example, the bond0 interface is the master (MASTER) while eth0 and eth1 are slaves (SLAVE).
Note
All slaves of bond0 have the same MAC address (Hwaddr) - bond0. All modes, except TLB and ALB, have this MAC address. TLB and ALB require a unique MAC address for each slave.

$ /sbin/ifconfig

bond0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING MASTER MULTICAST MTU:1500 Metric:1
RX packets:7224794 errors:0 dropped:0 overruns:0 frame:0
TX packets:3286647 errors:1 dropped:0 overruns:1 carrier:0
collisions:0 txqueuelen:0

eth0Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:3573025 errors:0 dropped:0 overruns:0 frame:0
TX packets:1643167 errors:1 dropped:0 overruns:1 carrier:0
collisions:0 txqueuelen:100
Interrupt:10 Base address:0x1080

eth1Link encap:EthernetHwaddr 00:C0:F0:1F:37:B4
inet addr:XXX.XXX.XXX.YYY Bcast:XXX.XXX.XXX.255 Mask:255.255.252.0
UP BROADCAST RUNNING SLAVE MULTICAST MTU:1500 Metric:1
RX packets:3651769 errors:0 dropped:0 overruns:0 frame:0
TX packets:1643480 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100
Interrupt:9 Base address:0x1400

7.5. Configuring a Lustre File System with Bonding

The Lustre software uses the IP address of the bonded interfaces and requires no special
 configuration. The bonded interface is treated as a regular TCP/IP interface. If needed,
 specify bond0 using the Lustre networks parameter in
 /etc/modprobe.
options lnet networks=tcp(bond0)

7.6. Bonding References

We recommend the following bonding references:
	In the Linux kernel source tree, see
 documentation/networking/bonding.txt

	http://linux-ip.net/html/ether-bonding.html.

	http://www.sourceforge.net/projects/bonding.

	Linux Foundation bonding website: http://www.linuxfoundation.org/collaborate/workgroups/networking/bonding. This
 is the most extensive reference and we highly recommend it. This website includes
 explanations of more complicated setups, including the use of DHCP with bonding.

Chapter 8. Installing the Lustre Software

This chapter describes how to install the Lustre software from RPM
 packages. It includes:
	
 Section 8.1, “
 Preparing to Install the Lustre Software”

	
 Section 8.2, “Lustre Software Installation Procedure”

For hardware and system requirements and hardware configuration
 information, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.
8.1.
 Preparing to Install the Lustre Software

You can install the Lustre software from downloaded packages (RPMs)
 or directly from the source code. This chapter describes how to install the
 Lustre RPM packages. Instructions to install from source code are beyond
 the scope of this document, and can be found elsewhere online.
The Lustre RPM packages are tested on current versions of Linux
 enterprise distributions at the time they are created. See the release
 notes for each version for specific details.
8.1.1. Software Requirements

To install the Lustre software from RPMs, the following are
 required:

	

 Lustre server packages
 . The required packages for Lustre 2.9 EL7 servers are
	 listed in the table below, where
 ver refers to the Lustre release and
	 kernel version (e.g., 2.9.0-1.el7) and
 arch refers to the processor architecture
 (e.g., x86_64). These packages are available in the

 Lustre Releases repository, and may differ depending on
	 your distro and version.

Table 8.1. Packages Installed on Lustre Servers
	Package Name	Description
	
 kernel-ver_lustre.arch
 	Linux kernel with Lustre software patches (often
 referred to as "patched kernel")
	
 lustre-ver.arch
 	Lustre software command line tools
	
 kmod-lustre-ver.arch
 	Lustre-patched kernel modules
	
 kmod-lustre-osd-ldiskfs-ver.arch
 	Lustre back-end file system tools for ldiskfs-based
		 servers.
		
	
 lustre-osd-ldiskfs-mount-ver.arch
 	Helper library for mount.lustre
		 and mkfs.lustre for ldiskfs-based servers.
		
	
 kmod-lustre-osd-zfs-ver.arch
 	Lustre back-end file system tools for ZFS. This is
 an alternative to
 lustre-osd-ldiskfs (kmod-spl and
		 kmod-zfs available separately).
	
 lustre-osd-zfs-mount-ver.arch
 	Helper library for mount.lustre
		 and mkfs.lustre for ZFS-based servers
		 (zfs utilities available separately).
		
	
 e2fsprogs
 	Utilities to maintain Lustre ldiskfs back-end file
		 system(s)
		
	
 lustre-tests-ver_lustre.arch
 	Lustre I/O Kit benchmarking tools
 (Included in Lustre software as of
 release 2.2)

	

 Lustre client packages
 . The required packages for Lustre 2.9 EL7 clients are
	 listed in the table below, where
 ver refers to the Linux distribution (e.g.,
 3.6.18-348.1.1.el5). These packages are available in the

 Lustre Releases repository.

Table 8.2. Packages Installed on Lustre Clients
	Package Name	Description
	
 kmod-lustre-client-ver.arch
 	Patchless kernel modules for client
	
 lustre-client-ver.arch
 	Client command line tools
	
 lustre-client-dkms-ver.arch
 	Alternate client RPM to kmod-lustre-client with
		 Dynamic Kernel Module Support (DKMS) installation. This
		 avoids the need to install a new RPM for each kernel update,
		 but requires a full build environment on the client.

Note
The version of the kernel running on a Lustre client must be
 the same as the version of the
 kmod-lustre-client-ver
	 package being installed, unless the DKMS package is installed.
	 If the kernel running on the client is not compatible, a kernel
	 that is compatible must be installed on the client before the
	 Lustre file system software is used.

	

 Lustre LNet network driver (LND)
 . The Lustre LNDs provided with the Lustre software are
 listed in the table below. For more information about Lustre LNet,
 see
 Chapter 2, Understanding Lustre Networking (LNet).
Table 8.3. Network Types Supported by Lustre LNDs
	Supported Network Types	Notes
	TCP	Any network carrying TCP traffic, including GigE,
 10GigE, and IPoIB
	InfiniBand network	OpenFabrics OFED (o2ib)
	gni	Gemini (Cray)

Note
The InfiniBand and TCP Lustre LNDs are routinely tested during
 release cycles. The other LNDs are maintained by their respective
 owners

	

 High availability software
 . If needed, install third party high-availability
 software. For more information, see
 Section 11.2, “Preparing a Lustre File System for Failover”.

	

 Optional packages.
 Optional packages provided in the

 Lustre Releases repository may include the following
 (depending on the operating system and platform):

	
 kernel-debuginfo,
 kernel-debuginfo-common,
 lustre-debuginfo,
 lustre-osd-ldiskfs-debuginfo- Versions of required
 packages with debugging symbols and other debugging options
 enabled for use in troubleshooting.

	
 kernel-devel, - Portions of the kernel tree needed
 to compile third party modules, such as network drivers.

	
 kernel-firmware- Standard Red Hat Enterprise Linux
 distribution that has been recompiled to work with the Lustre
 kernel.

	
 kernel-headers- Header files installed under
 /user/include and used when compiling user-space,
 kernel-related code.

	
 lustre-source- Lustre software source code.

	
 (Recommended)
 perf,
 perf-debuginfo,
 python-perf,
 python-perf-debuginfo- Linux performance analysis
 tools that have been compiled to match the Lustre kernel
 version.

8.1.2. Environmental Requirements

Before installing the Lustre software, make sure the following
 environmental requirements are met.

	
 (Required)

 Use the same user IDs (UID) and group IDs
 (GID) on all clients.
 If use of supplemental groups is required, see
 Section 40.1, “User/Group Upcall” for information about
 supplementary user and group cache upcall (identity_upcall).

	
 (Recommended)

 Provide remote shell access to
 clients.
 It is recommended that all cluster nodes have remote shell
 client access to facilitate the use of Lustre configuration and
 monitoring scripts. Parallel Distributed SHell (pdsh) is preferable,
 although Secure SHell (SSH) is acceptable.

	
 (Recommended)

 Ensure client clocks are
 synchronized.
 The Lustre file system uses client clocks for timestamps.
 If clocks are out of sync between clients, files will appear with
 different time stamps when accessed by different clients. Drifting
 clocks can also cause problems by, for example, making it difficult
 to debug multi-node issues or correlate logs, which depend on
 timestamps. We recommend that you use Network Time Protocol (NTP) to
 keep client and server clocks in sync with each other. For more
 information about NTP, see:
 http://www.ntp.org.

	
 (Recommended)

 Make sure security extensions
	
	 (such as the Novell AppArmor *security
	 system) and
	
 network packet filtering tools
	
	 (such as iptables) do not interfere with the Lustre software.

8.2. Lustre Software Installation Procedure

Caution
Before installing the Lustre software, back up ALL data. The Lustre
 software contains kernel modifications that interact with storage devices
 and may introduce security issues and data loss if not installed,
 configured, or administered properly.

To install the Lustre software from RPMs, complete the steps
 below.
	Verify that all Lustre installation requirements have been
 met.
	For hardware requirements, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.

	For software and environmental requirements, see the section
 Section 8.1, “
 Preparing to Install the Lustre Software”above.

	Download the
 e2fsprogs RPMs for your platform from the

 Lustre Releases repository.

	Download the Lustre server RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.1, “Packages Installed on Lustre Servers”for a list of required packages.

	Install the Lustre server and
 e2fsprogs packages on all Lustre servers (MGS, MDSs,
 and OSSs).

	Log onto a Lustre server as the
 root user

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages are installed correctly:

rpm -qa|egrep "lustre|wc"|sort

	Reboot the server.

	Repeat these steps on each Lustre server.

	Download the Lustre client RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.2, “Packages Installed on Lustre Clients”for a list of required packages.

	Install the Lustre client packages on all Lustre clients.

Note
The version of the kernel running on a Lustre client must be
 the same as the version of the
 lustre-client-modules-
 ver package being installed. If not, a
 compatible kernel must be installed on the client before the Lustre
 client packages are installed.

	Log onto a Lustre client as the root user.

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages were installed correctly:

rpm -qa|egrep "lustre|kernel"|sort

	Reboot the client.

	Repeat these steps on each Lustre client.

To configure LNet, go to
 Chapter 9, Configuring Lustre Networking (LNet). If default settings will be used for
 LNet, go to
 Chapter 10, Configuring a Lustre File
 System.

Chapter 9. Configuring Lustre Networking (LNet)

This chapter describes how to configure Lustre Networking (LNet). It
 includes the following sections:
	Section 9.1, “Configuring LNet via lnetctl”

	Section 9.2, “
 Overview of LNet Module Parameters”

	Section 9.3, “Setting the LNet Module networks Parameter”

	Section 9.4, “Setting the LNet Module ip2nets Parameter”

	Section 9.5, “Setting the LNet Module routes
 Parameter”

	Section 9.6, “Testing the LNet
 Configuration”

	Section 9.7, “Configuring the Router Checker”

	Section 9.8, “Best Practices for LNet Options”

Note
Configuring LNet is optional.
 LNet will use the first TCP/IP interface it discovers on a
 system (eth0) if it's loaded using the
 lctl network up. If this network configuration is
 sufficient, you do not need to configure LNet. LNet configuration is
 required if you are using Infiniband or multiple Ethernet
 interfaces.
Introduced in Lustre 2.7The lnetctl utility can be used
 to initialize LNet without bringing up any network interfaces. Network
 interfaces can be added after configuring LNet via
 lnetctl. lnetctl can also be used to
 manage an operational LNet. However, if it wasn't initialized by
 lnetctl then lnetctl lnet configure
 must be invoked before lnetctl can be used to manage
 LNet.

Introduced in Lustre 2.7DLC also introduces a C-API to enable
 configuring LNet programatically. See Chapter 44, LNet Configuration C-API

Introduced in Lustre 2.79.1. Configuring LNet via lnetctl

The lnetctl utility can be used to initialize
 and configure the LNet kernel module after it has been loaded via
 modprobe. In general the lnetctl format is as
 follows:
lnetctl cmd subcmd [options]
The following configuration items are managed by the tool:

	Configuring/unconfiguring LNet

	Adding/removing/showing Networks

	Adding/removing/showing Routes

	Enabling/Disabling routing

	Configuring Router Buffer Pools

9.1.1. Configuring LNet

After LNet has been loaded via modprobe,
 lnetctl utility can be used to configure LNet
 without bringing up networks which are specified in the module
 parameters. It can also be used to configure network interfaces
 specified in the module prameters by providing the
 --all option.
lnetctl lnet configure [--all]
--all: load NI configuration from module parameters
The lnetctl utility can also be used to
 unconfigure LNet.
lnetctl lnet unconfigure

9.1.2. Displaying Global Settings

The active LNet global settings can be displayed using the
 lnetctl command shown below:
lnetctl global show
For example:
lnetctl global show
 global:
 numa_range: 0
 max_intf: 200
 discovery: 1
 drop_asym_route: 0

9.1.3. Adding, Deleting and Showing
 Networks

Networks can be added, deleted, or shown after the LNet kernel
 module is loaded.
The lnetctl net add
 command is used to add networks:
lnetctl net add: add a network
 --net: net name (ex tcp0)
 --if: physical interface (ex eth0)
 --peer_timeout: time to wait before declaring a peer dead
 --peer_credits: defines the max number of inflight messages
 --peer_buffer_credits: the number of buffer credits per peer
 --credits: Network Interface credits
 --cpts: CPU Partitions configured net uses
 --help: display this help text

Example:
lnetctl net add --net tcp2 --if eth0
 --peer_timeout 180 --peer_credits 8
Introduced in Lustre 2.10Note
With the addition of Software based Multi-Rail
 in Lustre 2.10, the following should be noted:
	--net: no longer needs to be unique since multiple
 interfaces can be added to the same network.

	--if: The same interface per network can be added
 only once, however, more than one interface can now be specified
 (separated by a comma) for a node. For example: eth0,eth1,eth2.

For examples on adding multiple interfaces via
 lnetctl net add and/or YAML, please see
 Section 16.2, “Configuring Multi-Rail”

Networks can be deleted with the
 lnetctl net del
 command:
net del: delete a network
 --net: net name (ex tcp0)
 --if: physical inerface (e.g. eth0)

Example:
lnetctl net del --net tcp2
Introduced in Lustre 2.10Note
In a Software Multi-Rail configuration,
 specifying only the --net argument will delete the
 entire network and all interfaces under it. The new
 --if switch should also be used in conjunction with
 --net to specify deletion of a specific interface.

All or a subset of the configured networks can be shown with the
 lnetctl net show
 command. The output can be non-verbose or verbose.
net show: show networks
 --net: net name (ex tcp0) to filter on
 --verbose: display detailed output per network

Examples:
lnetctl net show
lnetctl net show --verbose
lnetctl net show --net tcp2 --verbose
Below are examples of non-detailed and detailed network
 configuration show.
non-detailed show
> lnetctl net show --net tcp2
net:
 - nid: 192.168.205.130@tcp2
 status: up
 interfaces:
 0: eth3

detailed show
> lnetctl net show --net tcp2 --verbose
net:
 - nid: 192.168.205.130@tcp2
 status: up
 interfaces:
 0: eth3
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256

Introduced in Lustre 2.109.1.4. Manual Adding, Deleting and Showing Peers

The lnetctl peer add
 command is used to manually add a remote peer to a software
 multi-rail configuration. For the dynamic peer discovery capability
 introduced in Lustre Release 2.11.0, please see
 Section 9.1.5, “Dynamic Peer Discovery”.
When configuring peers, use the –-prim_nid
 option to specify the key or primary nid of the peer node. Then
 follow that with the --nid option to specify a
 set of comma separated NIDs.
peer add: add a peer
 --prim_nid: primary NID of the peer
 --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)
 --non_mr: if specified this interface is created as a non mulit-rail
 capable peer. Only one NID can be specified in this case.
For example:

 lnetctl peer add --prim_nid 10.10.10.2@tcp --nid 10.10.3.3@tcp1,10.4.4.5@tcp2

The --prim-nid (primary nid for the peer
 node) can go unspecified. In this case, the first listed NID in the
 --nid option becomes the primary nid of the peer.
 For example:

 lnetctl peer_add --nid 10.10.10.2@tcp,10.10.3.3@tcp1,10.4.4.5@tcp2
YAML can also be used to configure peers:
peer:
 - primary nid: <key or primary nid>
 Multi-Rail: True
 peer ni:
 - nid: <nid 1>
 - nid: <nid 2>
 - nid: <nid n>
As with all other commands, the result of the
 lnetctl peer show command can be used to gather
 information to aid in configuring or deleting a peer:
lnetctl peer show -v
Example output from the lnetctl peer show
 command:
peer:
 - primary nid: 192.168.122.218@tcp
 Multi-Rail: True
 peer ni:
 - nid: 192.168.122.218@tcp
 state: NA
 max_ni_tx_credits: 8
 available_tx_credits: 8
 available_rtr_credits: 8
 min_rtr_credits: -1
 tx_q_num_of_buf: 0
 send_count: 6819
 recv_count: 6264
 drop_count: 0
 refcount: 1
 - nid: 192.168.122.78@tcp
 state: NA
 max_ni_tx_credits: 8
 available_tx_credits: 8
 available_rtr_credits: 8
 min_rtr_credits: -1
 tx_q_num_of_buf: 0
 send_count: 7061
 recv_count: 6273
 drop_count: 0
 refcount: 1
 - nid: 192.168.122.96@tcp
 state: NA
 max_ni_tx_credits: 8
 available_tx_credits: 8
 available_rtr_credits: 8
 min_rtr_credits: -1
 tx_q_num_of_buf: 0
 send_count: 6939
 recv_count: 6286
 drop_count: 0
 refcount: 1
Use the following lnetctl command to delete a
 peer:
peer del: delete a peer
 --prim_nid: Primary NID of the peer
 --nid: comma separated list of peer nids (e.g. 10.1.1.2@tcp0)
prim_nid should always be specified. The
 prim_nid identifies the peer. If the
 prim_nid is the only one specified, then the
 entire peer is deleted.
Example of deleting a single nid of a peer (10.10.10.3@tcp):

lnetctl peer del --prim_nid 10.10.10.2@tcp --nid 10.10.10.3@tcp
Example of deleting the entire peer:
lnetctl peer del --prim_nid 10.10.10.2@tcp

Introduced in Lustre 2.119.1.5. Dynamic Peer Discovery

9.1.5.1. Overview

Dynamic Discovery (DD) is a feature that allows nodes to
 dynamically discover a peer's interfaces without having to explicitly
 configure them. This is very useful for Multi-Rail (MR)
 configurations. In large clusters, there could be hundreds of nodes
 and having to configure MR peers on each node becomes error prone.
 Dynamic Discovery is enabled by default and uses a new protocol based
 on LNet pings to discover the interfaces of the remote peers on first
 message.

9.1.5.2. Protocol

When LNet on a node is requested to send a message to a peer it
 first attempts to ping the peer. The reply to the ping contains the
 peer's NIDs as well as a feature bit outlining what the peer supports.
 Dynamic Discovery adds a Multi-Rail feature bit. If the peer is
 Multi-Rail capable, it sets the MR bit in the ping reply. When the
 node receives the reply it checks the MR bit, and if it is set it then
 pushes its own list of NIDs to the peer using a new PUT message,
 referred to as a "push ping". After this brief protocol, both the peer
 and the node will have each other's list of interfaces. The MR
 algorithm can then proceed to use the list of interfaces of the
 corresponding peer.
If the peer is not MR capable, it will not set the MR feature
 bit in the ping reply. The node will understand that the peer is
 not MR capable and will only use the interface provided by upper
 layers for sending messages.

9.1.5.3. Dynamic Discovery and User-space Configuration

It is possible to configure the peer manually while Dynamic
 Discovery is running. Manual peer configuration always takes precedence
 over Dynamic Discovery. If there is a discrepancy between the manual
 configuration and the dynamically discovered information, a warning is
 printed.

9.1.5.4. Configuration

Dynamic Discovery is very light on the configuration side. It can
 only be turned on or turned off. To turn the feature on or off, the
 following command is used:
lnetctl set discovery [0 | 1]
To check the current discovery setting, the
 lnetctl global show command can be used as shown in
 Section 9.1.2, “Displaying Global Settings”.

9.1.5.5. Initiating Dynamic Discovery on Demand

It is possible to initiate the Dynamic Discovery protocol on demand
 without having to wait for a message to be sent to the peer. This can
 be done with the following command:
lnetctl discover <peer_nid> [<peer_nid> ...]

9.1.6. Adding, Deleting and Showing routes

A set of routes can be added to identify how LNet messages are
 to be routed.
lnetctl route add: add a route
 --net: net name (ex tcp0) LNet message is destined to.
 The can not be a local network.
 --gateway: gateway node nid (ex 10.1.1.2@tcp) to route
 all LNet messaged destined for the identified
 network
 --hop: number of hops to final destination
 (1 < hops < 255)
 --priority: priority of route (0 - highest prio)

Example:
lnetctl route add --net tcp2 --gateway 192.168.205.130@tcp1 --hop 2 --prio 1
Routes can be deleted via the following lnetctl
 command.
lnetctl route del: delete a route
 --net: net name (ex tcp0)
 --gateway: gateway nid (ex 10.1.1.2@tcp)

Example:
lnetctl route del --net tcp2 --gateway 192.168.205.130@tcp1
Configured routes can be shown via the following
 lnetctl command.
lnetctl route show: show routes
 --net: net name (ex tcp0) to filter on
 --gateway: gateway nid (ex 10.1.1.2@tcp) to filter on
 --hop: number of hops to final destination
 (1 < hops < 255) to filter on
 --priority: priority of route (0 - highest prio)
 to filter on
 --verbose: display detailed output per route

Examples:
non-detailed show
lnetctl route show

detailed show
lnetctl route show --verbose
When showing routes the --verbose option
 outputs more detailed information. All show and error output are in
 YAML format. Below are examples of both non-detailed and detailed
 route show output.
#Non-detailed output
> lnetctl route show
route:
 - net: tcp2
 gateway: 192.168.205.130@tcp1

#detailed output
> lnetctl route show --verbose
route:
 - net: tcp2
 gateway: 192.168.205.130@tcp1
 hop: 2
 priority: 1
 state: down

9.1.7. Enabling and Disabling Routing

When an LNet node is configured as a router it will route LNet
 messages not destined to itself. This feature can be enabled or
 disabled as follows.
lnetctl set routing [0 | 1]
0 - disable routing feature
1 - enable routing feature

9.1.8. Showing routing information

When routing is enabled on a node, the tiny, small and large
 routing buffers are allocated. See Section 33.3, “

 Tuning LNet Parameters” for more details on router
 buffers. This information can be shown as follows:
lnetctl routing show: show routing information

Example:
lnetctl routing show
An example of the show output:
> lnetctl routing show
routing:
 - cpt[0]:
 tiny:
 npages: 0
 nbuffers: 2048
 credits: 2048
 mincredits: 2048
 small:
 npages: 1
 nbuffers: 16384
 credits: 16384
 mincredits: 16384
 large:
 npages: 256
 nbuffers: 1024
 credits: 1024
 mincredits: 1024
 - enable: 1

9.1.9. Configuring Routing Buffers

 The routing buffers values configured specify the number of
 buffers in each of the tiny, small and large groups.
It is often desirable to configure the tiny, small and large
 routing buffers to some values other than the default. These values
 are global values, when set they are used by all configured CPU
 partitions. If routing is enabled then the values set take effect
 immediately. If a larger number of buffers is specified, then
 buffers are allocated to satisfy the configuration change. If fewer
 buffers are configured then the excess buffers are freed as they
 become unused. If routing is not set the values are not changed.
 The buffer values are reset to default if routing is turned off and
 on.
The lnetctl 'set' command can be
 used to set these buffer values. A VALUE greater than 0
 will set the number of buffers accordingly. A VALUE of 0
 will reset the number of buffers to system defaults.
set tiny_buffers:
 set tiny routing buffers
 VALUE must be greater than or equal to 0

set small_buffers: set small routing buffers
 VALUE must be greater than or equal to 0

set large_buffers: set large routing buffers
 VALUE must be greater than or equal to 0
Usage examples:
> lnetctl set tiny_buffers 4096
> lnetctl set small_buffers 8192
> lnetctl set large_buffers 2048
The buffers can be set back to the default values as follows:
> lnetctl set tiny_buffers 0
> lnetctl set small_buffers 0
> lnetctl set large_buffers 0

Introduced in Lustre 2.139.1.10. Asymmetrical Routes

9.1.10.1. Overview

An asymmetrical route is when a message from a remote peer is
	 coming through a router that is not known by this node
	 to reach the remote peer.
Asymmetrical routes can be an issue when debugging network, and
	 allowing them also opens the door to attacks where hostile clients
	 inject data to the servers.
So it is possible to activate a check in LNet, that will detect
	 any asymmetrical route message and drop it.

9.1.10.2. Configuration

In order to switch asymmetric route detection on or off, the
	 following command is used:
lnetctl set drop_asym_route [0 | 1]
This command works on a per-node basis. This means each node in a
	 Lustre cluster can decide whether it accepts asymmetrical route
	 messages.
To check the current drop_asym_route setting, the
 lnetctl global show command can be used as shown in
 Section 9.1.2, “Displaying Global Settings”.
By default, asymmetric route detection is off.

9.1.11. Importing YAML Configuration File

Configuration can be described in YAML format and can be fed
 into the lnetctl utility. The
 lnetctl utility parses the YAML file and performs
 the specified operation on all entities described there in. If no
 operation is defined in the command as shown below, the default
 operation is 'add'. The YAML syntax is described in a later
 section.
lnetctl import FILE.yaml
lnetctl import < FILE.yaml
The 'lnetctl import' command provides three
 optional parameters to define the operation to be performed on the
 configuration items described in the YAML file.
if no options are given to the command the "add" command is assumed
 # by default.
lnetctl import --add FILE.yaml
lnetctl import --add < FILE.yaml

to delete all items described in the YAML file
lnetctl import --del FILE.yaml
lnetctl import --del < FILE.yaml

to show all items described in the YAML file
lnetctl import --show FILE.yaml
lnetctl import --show < FILE.yaml

9.1.12. Exporting Configuration in YAML format

lnetctl utility provides the 'export'
 command to dump current LNet configuration in YAML format
lnetctl export FILE.yaml
lnetctl export > FILE.yaml

9.1.13. Showing LNet Traffic Statistics

lnetctl utility can dump the LNet traffic
 statistiscs as follows
lnetctl stats show

9.1.14. YAML Syntax

The lnetctl utility can take in a YAML file
 describing the configuration items that need to be operated on and
 perform one of the following operations: add, delete or show on the
 items described there in.
Net, routing and route YAML blocks are all defined as a YAML
 sequence, as shown in the following sections. The stats YAML block
 is a YAML object. Each sequence item can take a seq_no field. This
 seq_no field is returned in the error block. This allows the caller
 to associate the error with the item that caused the error. The
 lnetctl utilty does a best effort at configuring
 items defined in the YAML file. It does not stop processing the file
 at the first error.
Below is the YAML syntax describing the various
 configuration elements which can be operated on via DLC. Not all
 YAML elements are required for all operations (add/delete/show).
 The system ignores elements which are not pertinent to the requested
 operation.
9.1.14.1. Network Configuration

net:
 - net: <network. Ex: tcp or o2ib>
 interfaces:
 0: <physical interface>
 detail: <This is only applicable for show command. 1 - output detailed info. 0 - basic output>
 tunables:
 peer_timeout: <Integer. Timeout before consider a peer dead>
 peer_credits: <Integer. Transmit credits for a peer>
 peer_buffer_credits: <Integer. Credits available for receiving messages>
 credits: <Integer. Network Interface credits>
	SMP: <An array of integers of the form: "[x,y,...]", where each
	integer represents the CPT to associate the network interface
	with> seq_no: <integer. Optional. User generated, and is
	passed back in the YAML error block>
Both seq_no and detail fields do not appear in the show output.

9.1.14.2. Enable Routing and Adjust Router Buffer Configuration

routing:
 - tiny: <Integer. Tiny buffers>
 small: <Integer. Small buffers>
 large: <Integer. Large buffers>
 enable: <0 - disable routing. 1 - enable routing>
 seq_no: <Integer. Optional. User generated, and is passed back in the YAML error block>
The seq_no field does not appear in the show output

9.1.14.3. Show Statistics

statistics:
 seq_no: <Integer. Optional. User generated, and is passed back in the YAML error block>
The seq_no field does not appear in the show output

9.1.14.4. Route Configuration

route:
 - net: <network. Ex: tcp or o2ib>
 gateway: <nid of the gateway in the form <ip>@<net>: Ex: 192.168.29.1@tcp>
 hop: <an integer between 1 and 255. Optional>
 detail: <This is only applicable for show commands. 1 - output detailed info. 0. basic output>
 seq_no: <integer. Optional. User generated, and is passed back in the YAML error block>
Both seq_no and detail fields do not appear in the show output.

9.2.
 Overview of LNet Module Parameters

LNet kernel module (lnet) parameters specify how LNet is to be
 configured to work with Lustre, including which NICs will be
 configured to work with Lustre and the routing to be used with
 Lustre.
Parameters for LNet can be specified in the
 /etc/modprobe.d/lustre.conf file. In some cases
 the parameters may have been stored in
 /etc/modprobe.conf, but this has been deprecated
 since before RHEL5 and SLES10, and having a separate
 /etc/modprobe.d/lustre.conf file simplifies
 administration and distribution of the Lustre networking
 configuration. This file contains one or more entries with the
 syntax:
options lnet parameter=value
To specify the network interfaces that are to be used for
 Lustre, set either the networks parameter or the
 ip2nets parameter (only one of these parameters can
 be used at a time):
	networks - Specifies the networks to be used.

	ip2nets - Lists globally-available
	networks, each with a range of IP addresses. LNet then identifies
	locally-available networks through address list-matching
	lookup.

See Section 9.3, “Setting the LNet Module networks Parameter” and
 Section 9.4, “Setting the LNet Module ip2nets Parameter” for more details.
To set up routing between networks, use:
	routes - Lists networks and the NIDs of
 routers that forward to them.

See Section 9.5, “Setting the LNet Module routes
 Parameter” for more details.
A router checker can be configured to enable
 Lustre nodes to detect router health status, avoid routers that appear
 dead, and reuse those that restore service after failures. See Section 9.7, “Configuring the Router Checker” for more details.
For a complete reference to the LNet module parameters, see
 Chapter 42, Configuration Files and Module ParametersLNet
 Options.
Note
We recommend that you use 'dotted-quad' notation for
 IP addresses rather than host names to make it easier to read debug
 logs and debug configurations with multiple interfaces.

9.2.1. Using a Lustre Network Identifier (NID)
 to Identify a Node

A Lustre network identifier (NID) is used to uniquely identify
 a Lustre network endpoint by node ID and network type. The format of
 the NID is:
network_id@network_type
Examples are:
10.67.73.200@tcp0
10.67.75.100@o2ib
The first entry above identifies a TCP/IP node, while the
 second entry identifies an InfiniBand node.
When a mount command is run on a client, the client uses the
 NID of the MDS to retrieve configuration information. If an MDS has
 more than one NID, the client should use the appropriate NID for its
 local network.
To determine the appropriate NID to specify in
 the mount command, use the lctl command. To
 display MDS NIDs, run on the MDS :
lctl list_nids
To determine if a client can reach the MDS using a particular NID,
 run on the client:
lctl which_nid MDS_NID

9.3. Setting the LNet Module networks Parameter

If a node has more than one network interface, you'll
 typically want to dedicate a specific interface to Lustre. You can do
 this by including an entry in the lustre.conf file
 on the node that sets the LNet module networks
 parameter:
options lnet networks=comma-separated list of
 networks
This example specifies that a Lustre node will use a TCP/IP
 interface and an InfiniBand interface:
options lnet networks=tcp0(eth0),o2ib(ib0)
This example specifies that the Lustre node will use the TCP/IP
 interface eth1:
options lnet networks=tcp0(eth1)
Depending on the network design, it may be necessary to specify
 explicit interfaces. To explicitly specify that interface
 eth2 be used for network tcp0
 and eth3 be used for tcp1 , use
 this entry:
options lnet networks=tcp0(eth2),tcp1(eth3)
When more than one interface is available during the network
 setup, Lustre chooses the best route based on the hop count. Once the
 network connection is established, Lustre expects the network to stay
 connected. In a Lustre network, connections do not fail over to
 another interface, even if multiple interfaces are available on the
 same node.
Note
LNet lines in lustre.conf are only used by
 the local node to determine what to call its interfaces. They are
 not used for routing decisions.

9.3.1. Multihome Server Example

If a server with multiple IP addresses (multihome server) is
 connected to a Lustre network, certain configuration setting are
 required. An example illustrating these setting consists of a
 network with the following nodes:
	 Server svr1 with three TCP NICs (eth0,
	 eth1, and eth2) and an
	 InfiniBand NIC.

	 Server svr2 with three TCP NICs (eth0,
	 eth1, and eth2) and an
	 InfiniBand NIC. Interface eth2 will not be used for Lustre
	 networking.

	 TCP clients, each with a single TCP interface.

	 InfiniBand clients, each with a single Infiniband
	 interface and a TCP/IP interface for administration.

To set the networks option for this example:

	 On each server, svr1 and
	 svr2, include the following line in the
	 lustre.conf file:

options lnet networks=tcp0(eth0),tcp1(eth1),o2ib
	 For TCP-only clients, the first available non-loopback IP
	 interface is used for tcp0. Thus, TCP clients
	 with only one interface do not need to have options defined in
	 the lustre.conf file.

	 On the InfiniBand clients, include the following line in
	 the lustre.conf file:

options lnet networks=o2ib
Note
By default, Lustre ignores the loopback
	(lo0) interface. Lustre does not ignore IP
	addresses aliased to the loopback. If you alias IP addresses to
	the loopback interface, you must specify all Lustre networks using
	the LNet networks parameter.

Note
If the server has multiple interfaces on the same subnet,
	the Linux kernel will send all traffic using the first configured
	interface. This is a limitation of Linux, not Lustre. In this
	case, network interface bonding should be used. For more
	information about network interface bonding, see Chapter 7, Setting Up Network Interface Bonding.

9.4. Setting the LNet Module ip2nets Parameter

The ip2nets option is typically used when a
 single, universal lustre.conf file is run on all
 servers and clients. Each node identifies the locally available
 networks based on the listed IP address patterns that match the
 node's local IP addresses.
Note that the IP address patterns listed in the
 ip2nets option are only used
 to identify the networks that an individual node should instantiate.
 They are not used by LNet for any other
 communications purpose.
For the example below, the nodes in the network have these IP
 addresses:
	 Server svr1: eth0 IP address
	192.168.0.2, IP over Infiniband
	(o2ib) address
	132.6.1.2.

	 Server svr2: eth0 IP address
	192.168.0.4, IP over Infiniband
	(o2ib) address
	132.6.1.4.

	 TCP clients have IP addresses
	192.168.0.5-255.

	 Infiniband clients have IP over Infiniband
	(o2ib) addresses 132.6.[2-3].2, .4,
	.6, .8.

The following entry is placed in the
 lustre.conf file on each server and client:
options lnet 'ip2nets="tcp0(eth0) 192.168.0.[2,4]; \
tcp0 192.168.0.*; o2ib0 132.6.[1-3].[2-8/2]"'
Each entry in ip2nets is referred to as a
 'rule'.
The order of LNet entries is important when configuring servers.
 If a server node can be reached using more than one network, the first
 network specified in lustre.conf will be
 used.
Because svr1 and svr2
 match the first rule, LNet uses eth0 for
 tcp0 on those machines. (Although
 svr1 and svr2 also match the
 second rule, the first matching rule for a particular network is
 used).
The [2-8/2] format indicates a range of 2-8
 stepped by 2; that is 2,4,6,8. Thus, the clients at
 132.6.3.5 will not find a matching o2ib
 network.
Introduced in Lustre 2.10Note
Multi-rail deprecates the kernel parsing of ip2nets. ip2nets
 patterns are matched in user space and translated into Network
 interfaces to be added into the system.
The first interface that matches the IP pattern will be used when
 adding a network interface.
If an interface is explicitly specified as well as a pattern, the
 interface matched using the IP pattern will be sanitized against the
 explicitly-defined interface.
For example, tcp(eth0) 192.168.*.3 and there
 exists in the system eth0 == 192.158.19.3 and
 eth1 == 192.168.3.3, then the configuration will
 fail, because the pattern contradicts the interface specified.

A clear warning will be displayed if inconsistent configuration is
 encountered.
You could use the following command to configure ip2nets:
lnetctl import < ip2nets.yaml
For example:
ip2nets:
 - net-spec: tcp1
 interfaces:
 0: eth0
 1: eth1
 ip-range:
 0: 192.168.*.19
 1: 192.168.100.105
 - net-spec: tcp2
 interfaces:
 0: eth2
 ip-range:
 0: 192.168.*.*

9.5. Setting the LNet Module routes
 Parameter

The LNet module routes parameter is used to identify routers in
 a Lustre configuration. These parameters are set in
 modprobe.conf on each Lustre node.
Routes are typically set to connect to segregated subnetworks
 or to cross connect two different types of networks such as tcp and
 o2ib
The LNet routes parameter specifies a colon-separated list of
 router definitions. Each route is defined as a network number,
 followed by a list of routers:
routes=net_type router_NID(s)
This example specifies bi-directional routing in which TCP
 clients can reach Lustre resources on the IB networks and IB servers
 can access the TCP networks:
options lnet 'ip2nets="tcp0 192.168.0.*; \
 o2ib0(ib0) 132.6.1.[1-128]"' 'routes="tcp0 132.6.1.[1-8]@o2ib0; \
 o2ib0 192.16.8.0.[1-8]@tcp0"'
All LNet routers that bridge two networks are equivalent. They
 are not configured as primary or secondary, and the load is balanced
 across all available routers.
The number of LNet routers is not limited. Enough routers should
 be used to handle the required file serving bandwidth plus a 25
 percent margin for headroom.
9.5.1. Routing Example

On the clients, place the following entry in the
 lustre.conf file
lnet networks="tcp" routes="o2ib0 192.168.0.[1-8]@tcp0"
On the router nodes, use:
lnet networks="tcp o2ib" forwarding=enabled
On the MDS, use the reverse as shown below:
lnet networks="o2ib0" routes="tcp0 132.6.1.[1-8]@o2ib0"
To start the routers, run:
modprobe lnet
lctl network configure

9.6. Testing the LNet
 Configuration

After configuring Lustre Networking, it is highly recommended
 that you test your LNet configuration using the LNet Self-Test
 provided with the Lustre software. For more information about using
 LNet Self-Test, see Chapter 31, Testing Lustre Network Performance (LNet Self-Test).

9.7. Configuring the Router Checker

In a Lustre configuration in which different types of networks,
 such as a TCP/IP network and an Infiniband network, are connected by
 routers, a router checker can be run on the clients and servers in the
 routed configuration to monitor the status of the routers. In a
 multi-hop routing configuration, router checkers can be configured on
 routers to monitor the health of their next-hop routers.
A router checker is configured by setting LNet parameters in
 lustre.conf by including an entry in this
 form:
options lnet
 router_checker_parameter=value
The router checker parameters are:
	live_router_check_interval - Specifies a
	time interval in seconds after which the router checker will ping
	the live routers. The default value is 0, meaning no checking is
	done. To set the value to 60, enter:
options lnet live_router_check_interval=60

	dead_router_check_interval - Specifies a
	time interval in seconds after which the router checker will check
	for dead routers. The default value is 0, meaning no checking is
	done. To set the value to 60, enter:
options lnet dead_router_check_interval=60

	auto_down - Enables/disables (1/0) the automatic marking of
	router state as up or down. The default value is 1. To disable
	router marking, enter:
options lnet auto_down=0

	router_ping_timeout - Specifies a
	timeout for the router checker when it checks live or dead
	routers. The router checker sends a ping message to each dead or
	live router once every dead_router_check_interval or
	live_router_check_interval respectively. The default value is 50.
	To set the value to 60, enter:
options lnet router_ping_timeout=60
Note
The router_ping_timeout is consistent
	with the default LND timeouts. You may have to increase it on very
	large clusters if the LND timeout is also increased. For larger
	clusters, we suggest increasing the check interval.

	check_routers_before_use - Specifies
	 that routers are to be checked before use. Set to off by
	 default. If this parameter is set to on, the
	 dead_router_check_interval parameter must be given a positive
	 integer value.
options lnet check_routers_before_use=on

The router checker obtains the following information from each router:

	 Time the router was disabled

	 Elapsed disable time

If the router checker does not get a reply message from the
 router within router_ping_timeout seconds, it considers the router to
 be down.
If a router is marked 'up' and responds to a ping, the
 timeout is reset.
If 100 packets have been sent successfully through a router, the
 sent-packets counter for that router will have a value of 100.

9.8. Best Practices for LNet Options

For the networks, ip2nets,
 and routes options, follow these best practices to
 avoid configuration errors.
9.8.1. Escaping commas with quotes

Depending on the Linux distribution, commas may need to be
 escaped using single or double quotes. In the extreme case, the
 options entry would look like this:
options
 lnet'networks="tcp0,elan0"'
 'routes="tcp [2,10]@elan0"'
Added quotes may confuse some distributions. Messages such as
 the following may indicate an issue related to added quotes:
lnet: Unknown parameter 'networks'
A 'Refusing connection - no matching
 NID' message generally points to an error in the LNet
 module configuration.

9.8.2. Including comments

Place the semicolon terminating a comment
 immediately after the comment. LNet silently ignores
 everything between the # character at the
 beginning of the comment and the next semicolon.
In this incorrect example, LNet silently
 ignores pt11 192.168.0.[92,96], resulting in
 these nodes not being properly initialized. No error message is
 generated.
options lnet ip2nets="pt10 192.168.0.[89,93]; # comment
 with semicolon BEFORE comment \ pt11 192.168.0.[92,96];
This correct example shows
 the required syntax:
options lnet ip2nets="pt10 192.168.0.[89,93] \
comment with semicolon AFTER comment; \
pt11 192.168.0.[92,96] # comment
Do not add an excessive number of
 comments. The Linux kernel limits the length of character
 strings used in module options (usually to 1KB, but this may differ
 between vendor kernels). If you exceed this limit, errors result and
 the specified configuration may not be processed correctly.

Chapter 10. Configuring a Lustre File
 System

This chapter shows how to configure a simple Lustre file system
 comprised of a combined MGS/MDT, an OST and a client. It includes:
	
 Section 10.1, “
 Configuring a Simple Lustre File System”

	
 Section 10.2, “
 Additional Configuration Options”

10.1.
 Configuring a Simple Lustre File System

A Lustre file system can be set up in a variety of configurations by
 using the administrative utilities provided with the Lustre software. The
 procedure below shows how to configure a simple Lustre file system
 consisting of a combined MGS/MDS, one OSS with two OSTs, and a client. For
 an overview of the entire Lustre installation procedure, see
 Chapter 4, Installation Overview.
This configuration procedure assumes you have completed the
 following:
	

 Set up and configured your hardware
 . For more information about hardware requirements, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.

	
 Downloaded and installed the Lustre
 software.For more information about preparing for and
 installing the Lustre software, see
 Chapter 8, Installing the Lustre Software.

The following optional steps should also be completed, if needed,
 before the Lustre software is configured:
	
 Set up a hardware or software RAID on block devices to be
 used as OSTs or MDTs.For information about setting up RAID,
 see the documentation for your RAID controller or
 Chapter 6, Configuring Storage on a Lustre File System.

	
 Set up network interface bonding on Ethernet
 interfaces.For information about setting up network
 interface bonding, see
 Chapter 7, Setting Up Network Interface Bonding.

	
 Set lnet
 module parameters to specify how Lustre Networking (LNet) is
 to be configured to work with a Lustre file system and test the LNet
 configuration.LNet will, by default, use the first TCP/IP
 interface it discovers on a system. If this network configuration is
 sufficient, you do not need to configure LNet. LNet configuration is
 required if you are using InfiniBand or multiple Ethernet
 interfaces.

For information about configuring LNet, see
 Chapter 9, Configuring Lustre Networking (LNet). For information about testing LNet, see

 Chapter 31, Testing Lustre Network Performance (LNet Self-Test).
	
 Run the benchmark script
 sgpdd-survey to determine baseline performance of
 your hardware.Benchmarking your hardware will simplify
 debugging performance issues that are unrelated to the Lustre software
 and ensure you are getting the best possible performance with your
 installation. For information about running
 sgpdd-survey, see
 Chapter 32, Benchmarking Lustre File System Performance (Lustre I/O
 Kit).

Note
The
 sgpdd-survey script overwrites the device being tested
 so it must be run before the OSTs are configured.

To configure a simple Lustre file system, complete these
 steps:
	Create a combined MGS/MDT file system on a block device. On the
 MDS node, run:

mkfs.lustre --fsname=
fsname --mgs --mdt --index=0
/dev/block_device

The default file system name (
 fsname) is
 lustre.
Note
If you plan to create multiple file systems, the MGS should be
 created separately on its own dedicated block device, by
 running:

mkfs.lustre --fsname=
fsname --mgs
/dev/block_device

See
 Section 13.8, “
 Running Multiple Lustre File Systems”for more details.

	Optional for Lustre software release 2.4 and later.
 Add in additional MDTs.

mkfs.lustre --fsname=
fsname --mgsnode=
nid --mdt --index=1
/dev/block_device

Note
Up to 4095 additional MDTs can be added.

	Mount the combined MGS/MDT file system on the block device. On
 the MDS node, run:

mount -t lustre
/dev/block_device
/mount_point

Note
If you have created an MGS and an MDT on separate block
 devices, mount them both.

	Create the OST. On the OSS node, run:

mkfs.lustre --fsname=
fsname --mgsnode=
MGS_NID --ost --index=
OST_index
/dev/block_device

When you create an OST, you are formatting a
 ldiskfs or
 ZFS file system on a block storage device like you
 would with any local file system.
You can have as many OSTs per OSS as the hardware or drivers
 allow. For more information about storage and memory requirements for a
 Lustre file system, see
 Chapter 5, Determining Hardware Configuration Requirements and
 Formatting Options.
You can only configure one OST per block device. You should
 create an OST that uses the raw block device and does not use
 partitioning.
You should specify the OST index number at format time in order
 to simplify translating the OST number in error messages or file
 striping to the OSS node and block device later on.
If you are using block devices that are accessible from multiple
 OSS nodes, ensure that you mount the OSTs from only one OSS node at at
 time. It is strongly recommended that multiple-mount protection be
 enabled for such devices to prevent serious data corruption. For more
 information about multiple-mount protection, see
 Chapter 24, Lustre File System Failover and Multiple-Mount Protection.
Note
The Lustre software currently supports block devices up to 128
 TB on Red Hat Enterprise Linux 5 and 6 (up to 8 TB on other
 distributions). If the device size is only slightly larger that 16
 TB, it is recommended that you limit the file system size to 16 TB at
 format time. We recommend that you not place DOS partitions on top of
 RAID 5/6 block devices due to negative impacts on performance, but
 instead format the whole disk for the file system.

	Mount the OST. On the OSS node where the OST was created,
 run:

mount -t lustre
/dev/block_device
/mount_point

Note
To create additional OSTs, repeat Step
 4and Step
 5, specifying the
 next higher OST index number.

	Mount the Lustre file system on the client. On the client node,
 run:

mount -t lustre
MGS_node:/
fsname
/mount_point

Note
To mount the filesystem on additional clients, repeat Step
 6.

Note
If you have a problem mounting the file system, check the
 syslogs on the client and all the servers for errors and also check
 the network settings. A common issue with newly-installed systems is
 that
 hosts.deny or firewall rules may prevent
 connections on port 988.

	Verify that the file system started and is working correctly. Do
 this by running
 lfs df,
 dd and
 ls commands on the client node.

	
 (Optional)Run benchmarking tools to validate the
 performance of hardware and software layers in the cluster. Available
 tools include:
	
 obdfilter-survey- Characterizes the storage
 performance of a Lustre file system. For details, see
 Section 32.3, “Testing OST Performance (obdfilter-survey)”.

	
 ost-survey- Performs I/O against OSTs to detect
 anomalies between otherwise identical disk subsystems. For details,
 see
 Section 32.4, “Testing OST I/O Performance (ost-survey)”.

10.1.1.
 Simple Lustre Configuration Example

To see the steps to complete for a simple Lustre file system
 configuration, follow this example in which a combined MGS/MDT and two
 OSTs are created to form a file system called
 temp. Three block devices are used, one for the
 combined MGS/MDS node and one for each OSS node. Common parameters used
 in the example are listed below, along with individual node
 parameters.
	

 Common Parameters

 	

 Value

 	

 Description

	

 	

 MGS node

 	

 10.2.0.1@tcp0

 	
 Node for the combined MGS/MDS

	

 	

 file system

 	

 temp

 	
 Name of the Lustre file system

	

 	

 network type

 	

 TCP/IP

 	
 Network type used for Lustre file system
 temp

	

 Node Parameters

 	

 Value

 	

 Description

	
 MGS/MDS node

	

 	

 MGS/MDS node

 	

 mdt0

 	
 MDS in Lustre file system
 temp

	

 	

 block device

 	

 /dev/sdb

 	
 Block device for the combined MGS/MDS node

	

 	

 mount point

 	

 /mnt/mdt

 	
 Mount point for the
 mdt0 block device (
 /dev/sdb) on the MGS/MDS node

	
 First OSS node

	

 	

 OSS node

 	

 oss0

 	
 First OSS node in Lustre file system
 temp

	

 	

 OST

 	

 ost0

 	
 First OST in Lustre file system
 temp

	

 	

 block device

 	

 /dev/sdc

 	
 Block device for the first OSS node (
 oss0)

	

 	

 mount point

 	

 /mnt/ost0

 	
 Mount point for the
 ost0 block device (
 /dev/sdc) on the
 oss1 node

	
 Second OSS node

	

 	

 OSS node

 	

 oss1

 	
 Second OSS node in Lustre file system
 temp

	

 	

 OST

 	

 ost1

 	
 Second OST in Lustre file system
 temp

	 	

 block device

 	

 /dev/sdd

 	
 Block device for the second OSS node (oss1)

	

 	

 mount point

 	

 /mnt/ost1

 	
 Mount point for the
 ost1 block device (
 /dev/sdd) on the
 oss1 node

	
 Client node

	

 	

 client node

 	

 client1

 	
 Client in Lustre file system
 temp

	

 	

 mount point

 	

 /lustre

 	
 Mount point for Lustre file system
 temp on the
 client1 node

Note
We recommend that you use 'dotted-quad' notation for IP addresses
 rather than host names to make it easier to read debug logs and debug
 configurations with multiple interfaces.

For this example, complete the steps below:
	Create a combined MGS/MDT file system on the block device. On
 the MDS node, run:

[root@mds /]# mkfs.lustre --fsname=temp --mgs --mdt --index=0 /dev/sdb

This command generates this output:

 Permanent disk data:
Target: temp-MDT0000
Index: 0
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x75
 (MDT MGS first_time update)
Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
Parameters: mdt.identity_upcall=/usr/sbin/l_getidentity

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdb
 target name temp-MDTffff
 4k blocks 0
 options -i 4096 -I 512 -q -O dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-MDTffff -i 4096 -I 512 -q -O
dir_index,uninit_groups -F /dev/sdb
Writing CONFIGS/mountdata

	Mount the combined MGS/MDT file system on the block device. On
 the MDS node, run:

[root@mds /]# mount -t lustre /dev/sdb /mnt/mdt

This command generates this output:

Lustre: temp-MDT0000: new disk, initializing
Lustre: 3009:0:(lproc_mds.c:262:lprocfs_wr_identity_upcall()) temp-MDT0000:
group upcall set to /usr/sbin/l_getidentity
Lustre: temp-MDT0000.mdt: set parameter identity_upcall=/usr/sbin/l_getidentity
Lustre: Server temp-MDT0000 on device /dev/sdb has started

	Create and mount
 ost0.
In this example, the OSTs (
 ost0 and
 ost1) are being created on different OSS nodes (
 oss0 and
 oss1 respectively).
	Create
 ost0. On
 oss0 node, run:

[root@oss0 /]# mkfs.lustre --fsname=temp --mgsnode=10.2.0.1@tcp0 --ost
--index=0 /dev/sdc

The command generates this output:

 Permanent disk data:
Target: temp-OST0000
Index: 0
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdc
 target name temp-OST0000
 4k blocks 0
 options -I 256 -q -O dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OST0000 -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

	Mount ost0 on the OSS on which it was created. On
 oss0 node, run:

root@oss0 /] mount -t lustre /dev/sdc /mnt/ost0

The command generates this output:

LDISKFS-fs: file extents enabled
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0000: new disk, initializing
Lustre: Server temp-OST0000 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0000: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0000_UUID now active, resetting orphans

	Create and mount
 ost1.
	Create ost1. On
 oss1 node, run:

[root@oss1 /]# mkfs.lustre --fsname=temp --mgsnode=10.2.0.1@tcp0 \
 --ost --index=1 /dev/sdd

The command generates this output:

 Permanent disk data:
Target: temp-OST0001
Index: 1
Lustre FS: temp
Mount type: ldiskfs
Flags: 0x72
(OST first_time update)
Persistent mount opts: errors=remount-ro,extents,mballoc
Parameters: mgsnode=10.2.0.1@tcp

checking for existing Lustre data: not found
device size = 16MB
2 6 18
formatting backing filesystem ldiskfs on /dev/sdd
 target name temp-OST0001
 4k blocks 0
 options -I 256 -q -O dir_index,uninit_groups -F
mkfs_cmd = mkfs.ext2 -j -b 4096 -L temp-OST0001 -I 256 -q -O
dir_index,uninit_groups -F /dev/sdc
Writing CONFIGS/mountdata

	Mount ost1 on the OSS on which it was created. On
 oss1 node, run:

root@oss1 /] mount -t lustre /dev/sdd /mnt/ost1

The command generates this output:

LDISKFS-fs: file extents enabled
LDISKFS-fs: mballoc enabled
Lustre: temp-OST0001: new disk, initializing
Lustre: Server temp-OST0001 on device /dev/sdb has started

Shortly afterwards, this output appears:

Lustre: temp-OST0001: received MDS connection from 10.2.0.1@tcp0
Lustre: MDS temp-MDT0000: temp-OST0001_UUID now active, resetting orphans

	Mount the Lustre file system on the client. On the client node,
 run:

root@client1 /] mount -t lustre 10.2.0.1@tcp0:/temp /lustre

This command generates this output:

Lustre: Client temp-client has started

	Verify that the file system started and is working by running
 the
 df,
 dd and
 ls commands on the client node.
	Run the
 lfs df -h command:

[root@client1 /] lfs df -h

The
 lfs df -h command lists space usage per OST and
 the MDT in human-readable format. This command generates output
 similar to this:

UUID bytes Used Available Use% Mounted on
temp-MDT0000_UUID 8.0G 400.0M 7.6G 0% /lustre[MDT:0]
temp-OST0000_UUID 800.0G 400.0M 799.6G 0% /lustre[OST:0]
temp-OST0001_UUID 800.0G 400.0M 799.6G 0% /lustre[OST:1]
filesystem summary: 1.6T 800.0M 1.6T 0% /lustre

	Run the
 lfs df -ih command.

[root@client1 /] lfs df -ih

The
 lfs df -ih command lists inode usage per OST
 and the MDT. This command generates output similar to
 this:

UUID Inodes IUsed IFree IUse% Mounted on
temp-MDT0000_UUID 2.5M 32 2.5M 0% /lustre[MDT:0]
temp-OST0000_UUID 5.5M 54 5.5M 0% /lustre[OST:0]
temp-OST0001_UUID 5.5M 54 5.5M 0% /lustre[OST:1]
filesystem summary: 2.5M 32 2.5M 0% /lustre

	Run the
 dd command:

[root@client1 /] cd /lustre
[root@client1 /lustre] dd if=/dev/zero of=/lustre/zero.dat bs=4M count=2

The
 dd command verifies write functionality by
 creating a file containing all zeros (
 0s). In this command, an 8 MB file is created.
 This command generates output similar to this:

2+0 records in
2+0 records out
8388608 bytes (8.4 MB) copied, 0.159628 seconds, 52.6 MB/s

	Run the
 ls command:

[root@client1 /lustre] ls -lsah

The
 ls -lsah command lists files and directories in
 the current working directory. This command generates output
 similar to this:

total 8.0M
4.0K drwxr-xr-x 2 root root 4.0K Oct 16 15:27 .
8.0K drwxr-xr-x 25 root root 4.0K Oct 16 15:27 ..
8.0M -rw-r--r-- 1 root root 8.0M Oct 16 15:27 zero.dat

Once the Lustre file system is configured, it is ready for
 use.

10.2.
 Additional Configuration Options

This section describes how to scale the Lustre file system or make
 configuration changes using the Lustre configuration utilities.
10.2.1.
 Scaling the Lustre File System

A Lustre file system can be scaled by adding OSTs or clients. For
 instructions on creating additional OSTs repeat Step
 3and Step
 5above. For mounting
 additional clients, repeat Step
 6for each client.

10.2.2.
 Changing Striping Defaults

The default settings for the file layout stripe pattern are shown
 in
 Table 10.1, “Default stripe pattern”.
Table 10.1. Default stripe pattern
	

 File Layout Parameter

 	

 Default

 	

 Description

	

 stripe_size

 	
 1 MB

 	
 Amount of data to write to one OST before moving to the
 next OST.

	

 stripe_count

 	
 1

 	
 The number of OSTs to use for a single file.

	

 start_ost

 	
 -1

 	
 The first OST where objects are created for each file.
 The default -1 allows the MDS to choose the starting index
 based on available space and load balancing.
 It's strongly recommended not to change the default
 for this parameter to a value other than -1.

Use the
 lfs setstripe command described in
 Chapter 19, Managing File Layout (Striping) and Free
 Spaceto change the file layout
 configuration.

10.2.3.
 Using the Lustre Configuration Utilities

If additional configuration is necessary, several configuration
 utilities are available:
	
 mkfs.lustre- Use to format a disk for a Lustre
 service.

	
 tunefs.lustre- Use to modify configuration
 information on a Lustre target disk.

	
 lctl- Use to directly control Lustre features via
 an
 ioctl interface, allowing various configuration,
 maintenance and debugging features to be accessed.

	
 mount.lustre- Use to start a Lustre client or
 target service.

For examples using these utilities, see the topic
 Chapter 43, System Configuration Utilities
The
 lfs utility is useful for configuring and querying a
 variety of options related to files. For more information, see
 Chapter 39, User Utilities.
Note
Some sample scripts are included in the directory where the
 Lustre software is installed. If you have installed the Lustre source
 code, the scripts are located in the
 lustre/tests sub-directory. These scripts enable
 quick setup of some simple standard Lustre configurations.

Chapter 11. Configuring Failover in a Lustre File System

This chapter describes how to configure failover in a Lustre file system. It
 includes:
	
 Section 11.1, “Setting Up a Failover Environment”

	Section 11.2, “Preparing a Lustre File System for Failover”

	Section 11.3, “Administering Failover in a Lustre File System”

For an overview of failover functionality in a Lustre file system, see Chapter 3, Understanding Failover in a
 Lustre File System.
11.1. Setting Up a Failover Environment

The Lustre software provides failover mechanisms only at the layer of the Lustre file
 system. No failover functionality is provided for system-level components such as failing
 hardware or applications, or even for the entire failure of a node, as would typically be
 provided in a complete failover solution. Failover functionality such as node monitoring,
 failure detection, and resource fencing must be provided by external HA software, such as
 PowerMan or the open source Corosync and Pacemaker packages provided by Linux operating system
 vendors. Corosync provides support for detecting failures, and Pacemaker provides the actions
 to take once a failure has been detected.
11.1.1. Selecting Power Equipment

Failover in a Lustre file system requires the use of a remote power control (RPC)
 mechanism, which comes in different configurations. For example, Lustre server nodes may be
 equipped with IPMI/BMC devices that allow remote power control. In the past, software or
 even “sneakerware” has been used, but these are not recommended. For recommended devices,
 refer to the list of supported RPC devices on the website for the PowerMan cluster power
 management utility:
http://code.google.com/p/powerman/wiki/SupportedDevs

11.1.2. Selecting Power Management Software

Lustre failover requires RPC and management capability to verify that a failed node is
 shut down before I/O is directed to the failover node. This avoids double-mounting the two
 nodes and the risk of unrecoverable data corruption. A variety of power management tools
 will work. Two packages that have been commonly used with the Lustre software are PowerMan
 and Linux-HA (aka. STONITH).
The PowerMan cluster power management utility is used to control RPC devices from a
 central location. PowerMan provides native support for several RPC varieties and Expect-like
 configuration simplifies the addition of new devices. The latest versions of PowerMan are
 available at:
http://code.google.com/p/powerman/
STONITH, or “Shoot The Other Node In The Head”, is a set of power management tools
 provided with the Linux-HA package prior to Red Hat Enterprise Linux 6. Linux-HA has native
 support for many power control devices, is extensible (uses Expect scripts to automate
 control), and provides the software to detect and respond to failures. With Red Hat
 Enterprise Linux 6, Linux-HA is being replaced in the open source community by the
 combination of Corosync and Pacemaker. For Red Hat Enterprise Linux subscribers, cluster
 management using CMAN is available from Red Hat.

11.1.3. Selecting High-Availability (HA) Software

The Lustre file system must be set up with high-availability (HA) software to enable a
 complete Lustre failover solution. Except for PowerMan, the HA software packages mentioned
 above provide both power management and cluster management. For information about setting
 up failover with Pacemaker, see:
	Pacemaker Project website: http://clusterlabs.org/

	Article Using Pacemaker with a Lustre File
 System: https://wiki.whamcloud.com/display/PUB/Using+Pacemaker+with+a+Lustre+File+System

11.2. Preparing a Lustre File System for Failover

To prepare a Lustre file system to be configured and managed as an HA system by a
 third-party HA application, each storage target (MGT, MGS, OST) must be associated with a
 second node to create a failover pair. This configuration information is then communicated by
 the MGS to a client when the client mounts the file system.
The per-target configuration is relayed to the MGS at mount time. Some rules related to
 this are:
	 When a target is initially mounted, the MGS reads the configuration
 information from the target (such as mgt vs. ost, failnode, fsname) to configure the
 target into a Lustre file system. If the MGS is reading the initial mount configuration,
 the mounting node becomes that target's “primary” node.

	When a target is subsequently mounted, the MGS reads the current configuration
 from the target and, as needed, will reconfigure the MGS database target
 information

When the target is formatted using the mkfs.lustre command, the failover
 service node(s) for the target are designated using the --servicenode
 option. In the example below, an OST with index 0 in the file system
 testfs is formatted with two service nodes designated to serve as a
 failover
 pair:
mkfs.lustre --reformat --ost --fsname testfs --mgsnode=192.168.10.1@o3ib \
 --index=0 --servicenode=192.168.10.7@o2ib \
 --servicenode=192.168.10.8@o2ib \
 /dev/sdb
More than two potential service nodes can be designated for a target. The target can then
 be mounted on any of the designated service nodes.
When HA is configured on a storage target, the Lustre software enables multi-mount
 protection (MMP) on that storage target. MMP prevents multiple nodes from simultaneously
 mounting and thus corrupting the data on the target. For more about MMP, see Chapter 24, Lustre File System Failover and Multiple-Mount Protection.
If the MGT has been formatted with multiple service nodes designated, this information
 must be conveyed to the Lustre client in the mount command used to mount the file system. In
 the example below, NIDs for two MGSs that have been designated as service nodes for the MGT
 are specified in the mount command executed on the
 client:
mount -t lustre 10.10.120.1@tcp1:10.10.120.2@tcp1:/testfs /lustre/testfs
When a client mounts the file system, the MGS provides configuration information to the
 client for the MDT(s) and OST(s) in the file system along with the NIDs for all service nodes
 associated with each target and the service node on which the target is mounted. Later, when
 the client attempts to access data on a target, it will try the NID for each specified service
 node until it connects to the target.
Previous to Lustre software release 2.0, the --failnode option to
 mkfs.lustre was used to designate a failover service node for a primary
 server for a target. When the --failnode option is used, certain
 restrictions apply:
	The target must be initially mounted on the primary service node, not the failover
 node designated by the --failnode option.

	If the tunefs.lustre –-writeconf option is used to erase and
 regenerate the configuration log for the file system, a target cannot be initially
 mounted on a designated failnode.

	If a --failnode option is added to a target to designate a
 failover server for the target, the target must be re-mounted on the primary node before
 the --failnode option takes effect

11.3. Administering Failover in a Lustre File System

For additional information about administering failover features in a Lustre file system, see:
	Section 13.6, “
 Specifying Failout/Failover Mode for OSTs”

	Section 13.12, “
 Specifying NIDs and Failover”

	Section 14.12, “
Changing the Address of a Failover Node”

	Section 43.14, “
mkfs.lustre”

Chapter 12. Monitoring a Lustre File System

This chapter provides information on monitoring a Lustre file system and includes the
 following sections:
	Section 12.1, “

Lustre Changelogs”Lustre Changelogs

	Section 12.2, “

Lustre Jobstats”Lustre Jobstats

	Section 12.3, “ Lustre Monitoring Tool (LMT)”Lustre Monitoring Tool

	Section 12.4, “
 CollectL
 ”CollectL

	Section 12.5, “
Other Monitoring Options”Other Monitoring Options

12.1.

Lustre Changelogs

The changelogs feature records events that change the file system
 namespace or file metadata. Changes such as file creation, deletion,
 renaming, attribute changes, etc. are recorded with the target and parent
 file identifiers (FIDs), the name of the target, a timestamp, and user
 information. These records can be used for a variety of purposes:
	Capture recent changes to feed into an archiving system.

	Use changelog entries to exactly replicate changes in a file
	system mirror.

	Set up "watch scripts" that take action on certain
	events or directories.

	Audit activity on Lustre, thanks to user information associated to
	file/directory changes with timestamps.

Changelogs record types are:
	
 Value

 	
 Description

	
 MARK

 	
 Internal recordkeeping

	
 CREAT

 	
 Regular file creation

	
 MKDIR

 	
 Directory creation

	
 HLINK

 	
 Hard link

	
 SLINK

 	
 Soft link

	
 MKNOD

 	
 Other file creation

	
 UNLNK

 	
 Regular file removal

	
 RMDIR

 	
 Directory removal

	
 RENME

 	
 Rename, original

	
 RNMTO

 	
 Rename, final

	
 OPEN *

 	
 Open

	
 CLOSE

 	
 Close

	
 LYOUT

 	
 Layout change

	
 TRUNC

 	
 Regular file truncated

	
 SATTR

 	
 Attribute change

	
 XATTR

 	
 Extended attribute change (setxattr)

	
 HSM

 	
 HSM specific event

	
 MTIME

 	
 MTIME change

	
 CTIME

 	
 CTIME change

	
 ATIME *

 	
 ATIME change

	
 MIGRT

 	
 Migration event

	
 FLRW

 	
 File Level Replication: file initially written

	
 RESYNC

 	
 File Level Replication: file re-synced

	
 GXATR *

 	
 Extended attribute access (getxattr)

	
 NOPEN *

 	
 Denied open

Note
Event types marked with * are not recorded by default. Refer to
 Section 12.1.2.7, “Setting the Changelog Mask” for instructions on
 modifying the Changelogs mask.

FID-to-full-pathname and pathname-to-FID functions are also included
 to map target and parent FIDs into the file system namespace.
12.1.1.
Working with Changelogs

Several commands are available to work with changelogs.
12.1.1.1.
 lctl changelog_register

Because changelog records take up space on the MDT, the system
	administration must register changelog users. As soon as a changelog
	user is registered, the Changelogs feature is enabled. The registrants
	specify which records they are "done with", and the system
	purges up to the greatest common record.
To register a new changelog user, run:
mds# lctl --device fsname-MDTnumber changelog_register

Changelog entries are not purged beyond a registered user's
	set point (see lfs changelog_clear).

12.1.1.2.
 lfs changelog

To display the metadata changes on an MDT (the changelog records),
	run:
lfs changelog fsname-MDTnumber [startrec [endrec]]
It is optional whether to specify the start and end
	records.
These are sample changelog records:
1 02MKDIR 15:15:21.977666834 2018.01.09 0x0 t=[0x200000402:0x1:0x0] j=mkdir.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics
2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] j=cp.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
3 06UNLNK 15:15:41.305116815 2018.01.09 0x1 t=[0x200000402:0x2:0x0] j=rm.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] j=rmdir.500 ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics

12.1.1.3.
 lfs changelog_clear

To clear old changelog records for a specific user (records that
	the user no longer needs), run:
lfs changelog_clear mdt_name userid endrec
The changelog_clear command indicates that
	changelog records previous to endrec are no
	longer of interest to a particular user
	userid, potentially allowing the MDT to free
	up disk space. An endrec
	value of 0 indicates the current last record. To run
	changelog_clear, the changelog user must be
	registered on the MDT node using lctl.
When all changelog users are done with records < X, the records
	are deleted.

12.1.1.4.
 lctl changelog_deregister

To deregister (unregister) a changelog user, run:
mds# lctl --device mdt_device changelog_deregister userid
 changelog_deregister cl1 effectively does a
	lfs changelog_clear cl1 0 as it deregisters.

12.1.2. Changelog Examples

This section provides examples of different changelog
 commands.
12.1.2.1. Registering a Changelog User

To register a new changelog user for a device
	(lustre-MDT0000):
mds# lctl --device lustre-MDT0000 changelog_register
lustre-MDT0000: Registered changelog userid 'cl1'

12.1.2.2. Displaying Changelog Records

To display changelog records on an MDT
	(lustre-MDT0000):
$ lfs changelog lustre-MDT0000
1 02MKDIR 15:15:21.977666834 2018.01.09 0x0 t=[0x200000402:0x1:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics
2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
3 06UNLNK 15:15:41.305116815 2018.01.09 0x1 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics
Changelog records include this information:
rec#
operation_type(numerical/text)
timestamp
datestamp
flags
t=target_FID
ef=extended_flags
u=uid:gid
nid=client_NID
p=parent_FID
target_name
Displayed in this format:
rec# operation_type(numerical/text) timestamp datestamp flags t=target_FID \
ef=extended_flags u=uid:gid nid=client_NID p=parent_FID target_name
For example:
2 01CREAT 15:15:36.687592024 2018.01.09 0x0 t=[0x200000402:0x2:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000402:0x1:0x0] chloe.jpg

12.1.2.3. Clearing Changelog Records

To notify a device that a specific user (cl1)
	no longer needs records (up to and including 3):
$ lfs changelog_clear lustre-MDT0000 cl1 3
To confirm that the changelog_clear operation
	was successful, run lfs changelog; only records after
	id-3 are listed:
$ lfs changelog lustre-MDT0000
4 07RMDIR 15:15:46.468790091 2018.01.09 0x1 t=[0x200000402:0x1:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x1:0x0] pics

12.1.2.4. Deregistering a Changelog User

To deregister a changelog user (cl1) for a
	specific device (lustre-MDT0000):
mds# lctl --device lustre-MDT0000 changelog_deregister cl1
lustre-MDT0000: Deregistered changelog user 'cl1'
The deregistration operation clears all changelog records for the
	specified user (cl1).
$ lfs changelog lustre-MDT0000
5 00MARK 15:56:39.603643887 2018.01.09 0x0 t=[0x20001:0x0:0x0] ef=0xf \
u=500:500 nid=0@<0:0> p=[0:0x50:0xb] mdd_obd-lustre-MDT0000-0

Note
MARK records typically indicate changelog recording status
	 changes.

12.1.2.5. Displaying the Changelog Index and Registered Users

To display the current, maximum changelog index and registered
	changelog users for a specific device
	(lustre-MDT0000):
mds# lctl get_param mdd.lustre-MDT0000.changelog_users
mdd.lustre-MDT0000.changelog_users=current index: 8
ID index (idle seconds)
cl2 8 (180)

12.1.2.6. Displaying the Changelog Mask

To show the current changelog mask on a specific device
	(lustre-MDT0000):
mds# lctl get_param mdd.lustre-MDT0000.changelog_mask

mdd.lustre-MDT0000.changelog_mask=
MARK CREAT MKDIR HLINK SLINK MKNOD UNLNK RMDIR RENME RNMTO CLOSE LYOUT \
TRUNC SATTR XATTR HSM MTIME CTIME MIGRT

12.1.2.7. Setting the Changelog Mask

To set the current changelog mask on a specific device
	(lustre-MDT0000):
mds# lctl set_param mdd.lustre-MDT0000.changelog_mask=HLINK
mdd.lustre-MDT0000.changelog_mask=HLINK
$ lfs changelog_clear lustre-MDT0000 cl1 0
$ mkdir /mnt/lustre/mydir/foo
$ cp /etc/hosts /mnt/lustre/mydir/foo/file
$ ln /mnt/lustre/mydir/foo/file /mnt/lustre/mydir/myhardlink

Only item types that are in the mask show up in the
	changelog.
$ lfs changelog lustre-MDT0000
9 03HLINK 16:06:35.291636498 2018.01.09 0x0 t=[0x200000402:0x4:0x0] ef=0xf \
u=500:500 nid=10.128.11.159@tcp p=[0x200000007:0x3:0x0] myhardlink

Introduced in Lustre 2.1112.1.3.
Audit with Changelogs

A specific use case for Lustre Changelogs is audit. According to a
 definition found on
 Wikipedia, information technology audits are used to evaluate the
 organization's ability to protect its information assets and to properly
 dispense information to authorized parties. Basically, audit consists in
 controlling that all data accesses made were done according to the access
 control policy in place. And usually, this is done by analyzing access
 logs.
Audit can be used as a proof of security in place. But Audit can
 also be a requirement to comply with regulations.
Lustre Changelogs are a good mechanism for audit, because this is a
 centralized facility, and it is designed to be transactional. Changelog
 records contain all information necessary for auditing purposes:
	ability to identify object of action thanks to file identifiers
	 (FIDs) and name of targets

	ability to identify subject of action thanks to UID/GID and NID
	 information

	ability to identify time of action thanks to timestamp

12.1.3.1. Enabling Audit

To have a fully functional Changelogs-based audit facility, some
	additional Changelog record types must be enabled, to be able to record
	events such as OPEN, ATIME, GETXATTR and DENIED OPEN. Please note that
	enabling these record types may have some performance impact. For
	instance, recording OPEN and GETXATTR events generate writes in the
	Changelog records for a read operation from a file-system
	standpoint.
Being able to record events such as OPEN or DENIED OPEN is
	important from an audit perspective. For instance, if Lustre file system
	is used to store medical records on a system dedicated to Life Sciences,
	data privacy is crucial. Administrators may need to know which doctors
	accessed, or tried to access, a given medical record and when. And
	conversely, they might need to know which medical records a given doctor
	accessed.
To enable all changelog entry types, do:
mds# lctl set_param mdd.lustre-MDT0000.changelog_mask=ALL
mdd.seb-MDT0000.changelog_mask=ALL
Once all required record types have been enabled, just register a
	Changelogs user and the audit facility is operational.
Note that, however, it is possible to control which Lustre client
	nodes can trigger the recording of file system access events to the
	Changelogs, thanks to the audit_mode flag on nodemap
	entries. The reason to disable audit on a per-nodemap basis is to
	prevent some nodes (e.g. backup, HSM agent nodes) from flooding the
	audit logs. When audit_mode flag is
	set to 1 on a nodemap entry, a client pertaining to this nodemap will be
	able to record file system access events to the Changelogs, if
	Changelogs are otherwise activated. When set to 0, events are not logged
	into the Changelogs, no matter if Changelogs are activated or not. By
	default, audit_mode flag is set to 1 in newly created
	nodemap entries. And it is also set to 1 in 'default' nodemap.
To prevent nodes pertaining to a nodemap to generate Changelog
	entries, do:

mgs# lctl nodemap_modify --name nm1 --property audit_mode --value 0

12.1.3.2. Audit examples

12.1.3.2.1.
	 OPEN
	

An OPEN changelog entry is in the form:

7 10OPEN 13:38:51.510728296 2017.07.25 0x242 t=[0x200000401:0x2:0x0] \
ef=0x7 u=500:500 nid=10.128.11.159@tcp m=-w-
It includes information about the open mode, in the form
	 m=rwx.
OPEN entries are recorded only once per UID/GID, for a given
	 open mode, as long as the file is not closed by this UID/GID. It
	 avoids flooding the Changelogs for instance if there is an MPI job
	 opening the same file thousands of times from different threads. It
	 reduces the ChangeLog load significantly, without significantly
	 affecting the audit information. Similarly, only the last CLOSE per
	 UID/GID is recorded.

12.1.3.2.2.
	 GETXATTR
	

A GETXATTR changelog entry is in the form:

8 23GXATR 09:22:55.886793012 2017.07.27 0x0 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.159@tcp x=user.name0
It includes information about the name of the extended attribute
	 being accessed, in the form x=<xattr name>.
	

12.1.3.2.3.
	 SETXATTR
	

A SETXATTR changelog entry is in the form:

4 15XATTR 09:41:36.157333594 2018.01.10 0x0 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.159@tcp x=user.name0
It includes information about the name of the extended attribute
	 being modified, in the form x=<xattr name>.
	

12.1.3.2.4.
	 DENIED OPEN
	

A DENIED OPEN changelog entry is in the form:

4 24NOPEN 15:45:44.947406626 2017.08.31 0x2 t=[0x200000402:0x1:0x0] \
ef=0xf u=500:500 nid=10.128.11.158@tcp m=-w-
It has the same information as a regular OPEN entry. In order to
	 avoid flooding the Changelogs, DENIED OPEN entries are rate limited:
	 no more than one entry per user per file per time interval, this time
	 interval (in seconds) being configurable via
	 mdd.<mdtname>.changelog_deniednext
	 (default value is 60 seconds).

mds# lctl set_param mdd.lustre-MDT0000.changelog_deniednext=120
mdd.seb-MDT0000.changelog_deniednext=120
mds# lctl get_param mdd.lustre-MDT0000.changelog_deniednext
mdd.seb-MDT0000.changelog_deniednext=120

12.2.

Lustre Jobstats

The Lustre jobstats feature is available starting in Lustre software
 release 2.3. It collects file system operation statistics for user processes
 running on Lustre clients, and exposes them via procfs on the server using
 the unique Job Identifier (JobID) provided by the job scheduler for each
 job. Job schedulers known to be able to work with jobstats include:
 SLURM, SGE, LSF, Loadleveler, PBS and Maui/MOAB.
Since jobstats is implemented in a scheduler-agnostic manner, it is
 likely that it will be able to work with other schedulers also.
12.2.1.
 How Jobstats Works

The Lustre jobstats code on the client extracts the unique JobID
 from an environment variable within the user process, and sends this
 JobID to the server with the I/O operation. The server tracks
 statistics for operations whose JobID is given, indexed by that
 ID.
A Lustre setting on the client, jobid_var,
 specifies which variable to use. Any environment variable can be
 specified. For example, SLURM sets the
 SLURM_JOB_ID environment variable with the unique
 job ID on each client when the job is first launched on a node, and
 the SLURM_JOB_ID will be inherited by all child
 processes started below that process.
Lustre can also be configured to generate a synthetic JobID from
 the user's process name and User ID, by setting
 jobid_var to a special value,
 procname_uid.
The setting of jobid_var need not be the same
 on all clients. For example, one could use
 SLURM_JOB_ID on all clients managed by SLURM, and
 use procname_uid on clients not managed by SLURM,
 such as interactive login nodes.
It is not possible to have different
 jobid_var settings on a single node, since it is
 unlikely that multiple job schedulers are active on one client.
 However, the actual JobID value is local to each process environment
 and it is possible for multiple jobs with different JobIDs to be
 active on a single client at one time.

12.2.2.
Enable/Disable Jobstats

Jobstats are disabled by default. The current state of jobstats
 can be verified by checking lctl get_param jobid_var
 on a client:

$ lctl get_param jobid_var
jobid_var=disable

 To enable jobstats on the testfs file system with SLURM:
lctl conf_param testfs.sys.jobid_var=SLURM_JOB_ID
The lctl conf_param command to enable or disable
 jobstats should be run on the MGS as root. The change is persistent, and
 will be propagated to the MDS, OSS, and client nodes automatically when
 it is set on the MGS and for each new client mount.
To temporarily enable jobstats on a client, or to use a different
 jobid_var on a subset of nodes, such as nodes in a remote cluster that
 use a different job scheduler, or interactive login nodes that do not
 use a job scheduler at all, run the lctl set_param
 command directly on the client node(s) after the filesystem is mounted.
 For example, to enable the procname_uid synthetic
 JobID on a login node run:

lctl set_param jobid_var=procname_uid

 The lctl set_param setting is not persistent, and will
 be reset if the global jobid_var is set on the MGS or
 if the filesystem is unmounted.
The following table shows the environment variables which are set
 by various job schedulers. Set jobid_var to the value
 for your job scheduler to collect statistics on a per job basis.
	
 Job Scheduler

 	
 Environment Variable

	
 Simple Linux Utility for Resource Management (SLURM)

 	
 SLURM_JOB_ID

	
 Sun Grid Engine (SGE)

 	
 JOB_ID

	
 Load Sharing Facility (LSF)

 	
 LSB_JOBID

	
 Loadleveler

 	
 LOADL_STEP_ID

	
 Portable Batch Scheduler (PBS)/MAUI

 	
 PBS_JOBID

	
 Cray Application Level Placement Scheduler (ALPS)

 	
 ALPS_APP_ID

There are two special values for jobid_var:
 disable and procname_uid. To disable
 jobstats, specify jobid_var as disable:
lctl conf_param testfs.sys.jobid_var=disable
To track job stats per process name and user ID (for debugging, or
 if no job scheduler is in use on some nodes such as login nodes), specify
 jobid_var as procname_uid:
lctl conf_param testfs.sys.jobid_var=procname_uid

12.2.3.
Check Job Stats

Metadata operation statistics are collected on MDTs. These statistics can be accessed for
 all file systems and all jobs on the MDT via the lctl get_param
 mdt.*.job_stats. For example, clients running with
 jobid_var=procname_uid:

lctl get_param mdt.*.job_stats
job_stats:
- job_id: bash.0
 snapshot_time: 1352084992
 open: { samples: 2, unit: reqs }
 close: { samples: 2, unit: reqs }
 mknod: { samples: 0, unit: reqs }
 link: { samples: 0, unit: reqs }
 unlink: { samples: 0, unit: reqs }
 mkdir: { samples: 0, unit: reqs }
 rmdir: { samples: 0, unit: reqs }
 rename: { samples: 0, unit: reqs }
 getattr: { samples: 3, unit: reqs }
 setattr: { samples: 0, unit: reqs }
 getxattr: { samples: 0, unit: reqs }
 setxattr: { samples: 0, unit: reqs }
 statfs: { samples: 0, unit: reqs }
 sync: { samples: 0, unit: reqs }
 samedir_rename: { samples: 0, unit: reqs }
 crossdir_rename: { samples: 0, unit: reqs }
- job_id: mythbackend.0
 snapshot_time: 1352084996
 open: { samples: 72, unit: reqs }
 close: { samples: 73, unit: reqs }
 mknod: { samples: 0, unit: reqs }
 link: { samples: 0, unit: reqs }
 unlink: { samples: 22, unit: reqs }
 mkdir: { samples: 0, unit: reqs }
 rmdir: { samples: 0, unit: reqs }
 rename: { samples: 0, unit: reqs }
 getattr: { samples: 778, unit: reqs }
 setattr: { samples: 22, unit: reqs }
 getxattr: { samples: 0, unit: reqs }
 setxattr: { samples: 0, unit: reqs }
 statfs: { samples: 19840, unit: reqs }
 sync: { samples: 33190, unit: reqs }
 samedir_rename: { samples: 0, unit: reqs }
 crossdir_rename: { samples: 0, unit: reqs }

Data operation statistics are collected on OSTs. Data operations
 statistics can be accessed via
 lctl get_param obdfilter.*.job_stats, for example:

$ lctl get_param obdfilter.*.job_stats
obdfilter.myth-OST0000.job_stats=
job_stats:
- job_id: mythcommflag.0
 snapshot_time: 1429714922
 read: { samples: 974, unit: bytes, min: 4096, max: 1048576, sum: 91530035 }
 write: { samples: 0, unit: bytes, min: 0, max: 0, sum: 0 }
 setattr: { samples: 0, unit: reqs }
 punch: { samples: 0, unit: reqs }
 sync: { samples: 0, unit: reqs }
obdfilter.myth-OST0001.job_stats=
job_stats:
- job_id: mythbackend.0
 snapshot_time: 1429715270
 read: { samples: 0, unit: bytes, min: 0, max: 0, sum: 0 }
 write: { samples: 1, unit: bytes, min: 96899, max: 96899, sum: 96899 }
 setattr: { samples: 0, unit: reqs }
 punch: { samples: 1, unit: reqs }
 sync: { samples: 0, unit: reqs }
obdfilter.myth-OST0002.job_stats=job_stats:
obdfilter.myth-OST0003.job_stats=job_stats:
obdfilter.myth-OST0004.job_stats=
job_stats:
- job_id: mythfrontend.500
 snapshot_time: 1429692083
 read: { samples: 9, unit: bytes, min: 16384, max: 1048576, sum: 4444160 }
 write: { samples: 0, unit: bytes, min: 0, max: 0, sum: 0 }
 setattr: { samples: 0, unit: reqs }
 punch: { samples: 0, unit: reqs }
 sync: { samples: 0, unit: reqs }
- job_id: mythbackend.500
 snapshot_time: 1429692129
 read: { samples: 0, unit: bytes, min: 0, max: 0, sum: 0 }
 write: { samples: 1, unit: bytes, min: 56231, max: 56231, sum: 56231 }
 setattr: { samples: 0, unit: reqs }
 punch: { samples: 1, unit: reqs }
 sync: { samples: 0, unit: reqs }

12.2.4.
Clear Job Stats

Accumulated job statistics can be reset by writing proc file job_stats.
Clear statistics for all jobs on the local node:
lctl set_param obdfilter.*.job_stats=clear
Clear statistics only for job 'bash.0' on lustre-MDT0000:
lctl set_param mdt.lustre-MDT0000.job_stats=bash.0

12.2.5.
Configure Auto-cleanup Interval

By default, if a job is inactive for 600 seconds (10 minutes) statistics for this job will be dropped. This expiration value can be changed temporarily via:
lctl set_param *.*.job_cleanup_interval={max_age}
It can also be changed permanently, for example to 700 seconds via:
lctl conf_param testfs.mdt.job_cleanup_interval=700
The job_cleanup_interval can be set as 0 to disable the auto-cleanup. Note that if auto-cleanup of Jobstats is disabled, then all statistics will be kept in memory forever, which may eventually consume all memory on the servers. In this case, any monitoring tool should explicitly clear individual job statistics as they are processed, as shown above.

12.3. Lustre Monitoring Tool (LMT)

The Lustre Monitoring Tool (LMT) is a Python-based, distributed system that provides a
 top-like display of activity on server-side nodes (MDS, OSS and portals
 routers) on one or more Lustre file systems. It does not provide support for monitoring
 clients. For more information on LMT, including the setup procedure, see:
https://github.com/chaos/lmt/wiki
LMT questions can be directed to:
lmt-discuss@googlegroups.com

12.4.
 CollectL

CollectL is another tool that can be used to monitor a Lustre file
 system. You can run CollectL on a Lustre system that has any combination of
 MDSs, OSTs and clients. The collected data can be written to a file for continuous logging and
 played back at a later time. It can also be converted to a format suitable for
 plotting.
For more information about CollectL, see:
http://collectl.sourceforge.net
Lustre-specific documentation is also available. See:
http://collectl.sourceforge.net/Tutorial-Lustre.html

12.5.
Other Monitoring Options

A variety of standard tools are available publicly including the following:
	lltop - Lustre load monitor with batch scheduler integration.
 https://github.com/jhammond/lltop

	tacc_stats - A job-oriented system monitor, analyzation, and
 visualization tool that probes Lustre interfaces and collects statistics. https://github.com/jhammond/tacc_stats

	xltop - A continuous Lustre monitor with batch scheduler
 integration. https://github.com/jhammond/xltop

Another option is to script a simple monitoring solution that looks at various reports
 from ipconfig, as well as the procfs files generated by
 the Lustre software.

Chapter 13. Lustre Operations

Once you have the Lustre file system up and running, you can use the
 procedures in this section to perform these basic Lustre administration
 tasks.
13.1.

 Mounting by Label

The file system name is limited to 8 characters. We have encoded the
 file system and target information in the disk label, so you can mount by
 label. This allows system administrators to move disks around without
 worrying about issues such as SCSI disk reordering or getting the
 /dev/device wrong for a shared target. Soon, file system
 naming will be made as fail-safe as possible. Currently, Linux disk labels
 are limited to 16 characters. To identify the target within the file
 system, 8 characters are reserved, leaving 8 characters for the file system
 name:

fsname-MDT0000 or
fsname-OST0a19

To mount by label, use this command:

mount -t lustre -L
file_system_label
/mount_point

This is an example of mount-by-label:

mds# mount -t lustre -L testfs-MDT0000 /mnt/mdt

Caution
Mount-by-label should NOT be used in a multi-path environment or
 when snapshots are being created of the device, since multiple block
 devices will have the same label.

Although the file system name is internally limited to 8 characters,
 you can mount the clients at any mount point, so file system users are not
 subjected to short names. Here is an example:

client# mount -t lustre mds0@tcp0:/short
/dev/long_mountpoint_name

Introduced in Lustre 2.4
Introduced in Lustre 2.8

13.2.
 Starting Lustre

On the first start of a Lustre file system, the components must be
 started in the following order:
	Mount the MGT.
Note
If a combined MGT/MDT is present, Lustre will correctly mount
 the MGT and MDT automatically.

	Mount the MDT.
Note
Introduced in Lustre 2.4Mount all MDTs if multiple MDTs are
 present.

	Mount the OST(s).

	Mount the client(s).

13.3.
 Mounting a Server

Starting a Lustre server is straightforward and only involves the
 mount command. Lustre servers can be added to
 /etc/fstab:

mount -t lustre

The mount command generates output similar to this:

/dev/sda1 on /mnt/test/mdt type lustre (rw)
/dev/sda2 on /mnt/test/ost0 type lustre (rw)
192.168.0.21@tcp:/testfs on /mnt/testfs type lustre (rw)

In this example, the MDT, an OST (ost0) and file system (testfs) are
 mounted.

LABEL=testfs-MDT0000 /mnt/test/mdt lustre defaults,_netdev,noauto 0 0
LABEL=testfs-OST0000 /mnt/test/ost0 lustre defaults,_netdev,noauto 0 0

In general, it is wise to specify noauto and let your
 high-availability (HA) package manage when to mount the device. If you are
 not using failover, make sure that networking has been started before
 mounting a Lustre server. If you are running Red Hat Enterprise Linux, SUSE
 Linux Enterprise Server, Debian operating system (and perhaps others), use
 the
 _netdev flag to ensure that these disks are mounted after
 the network is up.
We are mounting by disk label here. The label of a device can be read
 with
 e2label. The label of a newly-formatted Lustre server
 may end in
 FFFF if the
 --index option is not specified to
 mkfs.lustre, meaning that it has yet to be assigned. The
 assignment takes place when the server is first started, and the disk label
 is updated. It is recommended that the
 --index option always be used, which will also ensure
 that the label is set at format time.
Caution
Do not do this when the client and OSS are on the same node, as
 memory pressure between the client and OSS can lead to deadlocks.

Caution
Mount-by-label should NOT be used in a multi-path
 environment.

13.4.
 Stopping the Filesystem

A complete Lustre filesystem shutdown occurs by unmounting all
 clients and servers in the order shown below. Please note that unmounting
 a block device causes the Lustre software to be shut down on that node.

Note
Please note that the -a -t lustre in the
 commands below is not the name of a filesystem, but rather is
 specifying to unmount all entries in /etc/mtab that are of type
 lustre

	Unmount the clients
On each client node, unmount the filesystem on that client
 using the umount command:
umount -a -t lustre
The example below shows the unmount of the
 testfs filesystem on a client node:
[root@client1 ~]# mount |grep testfs
XXX.XXX.0.11@tcp:/testfs on /mnt/testfs type lustre (rw,lazystatfs)

[root@client1 ~]# umount -a -t lustre
[154523.177714] Lustre: Unmounted testfs-client

	Unmount the MDT and MGT
On the MGS and MDS node(s), use the umount
 command:
umount -a -t lustre
The example below shows the unmount of the MDT and MGT for
	 the testfs filesystem on a combined MGS/MDS:
	
[root@mds1 ~]# mount |grep lustre
/dev/sda on /mnt/mgt type lustre (ro)
/dev/sdb on /mnt/mdt type lustre (ro)

[root@mds1 ~]# umount -a -t lustre
[155263.566230] Lustre: Failing over testfs-MDT0000
[155263.775355] Lustre: server umount testfs-MDT0000 complete
[155269.843862] Lustre: server umount MGS complete
For a seperate MGS and MDS, the same command is used, first on
 the MDS and then followed by the MGS.

	Unmount all the OSTs
On each OSS node, use the umount command:

umount -a -t lustre
The example below shows the unmount of all OSTs for the
	 testfs filesystem on server
	 OSS1:

[root@oss1 ~]# mount |grep lustre
/dev/sda on /mnt/ost0 type lustre (ro)
/dev/sdb on /mnt/ost1 type lustre (ro)
/dev/sdc on /mnt/ost2 type lustre (ro)

[root@oss1 ~]# umount -a -t lustre
[155336.491445] Lustre: Failing over testfs-OST0002
[155336.556752] Lustre: server umount testfs-OST0002 complete

For unmount command syntax for a single OST, MDT, or MGT target
 please refer to Section 13.5, “
 Unmounting a Specific Target on a Server”

13.5.
 Unmounting a Specific Target on a Server

To stop a Lustre OST, MDT, or MGT , use the
 umount
 /mount_point command.
The example below stops an OST, ost0, on mount
 point /mnt/ost0 for the testfs
 filesystem:
[root@oss1 ~]# umount /mnt/ost0
[385.142264] Lustre: Failing over testfs-OST0000
[385.210810] Lustre: server umount testfs-OST0000 complete
Gracefully stopping a server with the
 umount command preserves the state of the connected
 clients. The next time the server is started, it waits for clients to
 reconnect, and then goes through the recovery procedure.
If the force (
 -f) flag is used, then the server evicts all clients and
 stops WITHOUT recovery. Upon restart, the server does not wait for
 recovery. Any currently connected clients receive I/O errors until they
 reconnect.
Note
If you are using loopback devices, use the
 -d flag. This flag cleans up loop devices and can
 always be safely specified.

13.6.
 Specifying Failout/Failover Mode for OSTs

In a Lustre file system, an OST that has become unreachable because
 it fails, is taken off the network, or is unmounted can be handled in one
 of two ways:
	In
 failout mode, Lustre clients immediately receive
 errors (EIOs) after a timeout, instead of waiting for the OST to
 recover.

	In
 failover mode, Lustre clients wait for the OST to
 recover.

By default, the Lustre file system uses
 failover mode for OSTs. To specify
 failout mode instead, use the
 --param="failover.mode=failout" option as shown below
 (entered on one line):

oss# mkfs.lustre --fsname=
fsname --mgsnode=
mgs_NID --param=failover.mode=failout
 --ost --index=
ost_index
/dev/ost_block_device

In the example below,
 failout mode is specified for the OSTs on the MGS
 mds0 in the file system
 testfs(entered on one line).

oss# mkfs.lustre --fsname=testfs --mgsnode=mds0 --param=failover.mode=failout
 --ost --index=3 /dev/sdb

Caution
Before running this command, unmount all OSTs that will be affected
 by a change in
 failover/
 failout mode.

Note
After initial file system configuration, use the
 tunefs.lustre utility to change the mode. For example,
 to set the
 failout mode, run:

$ tunefs.lustre --param failover.mode=failout
/dev/ost_device

13.7.
 Handling Degraded OST RAID Arrays

Lustre includes functionality that notifies Lustre if an external
 RAID array has degraded performance (resulting in reduced overall file
 system performance), either because a disk has failed and not been
 replaced, or because a disk was replaced and is undergoing a rebuild. To
 avoid a global performance slowdown due to a degraded OST, the MDS can
 avoid the OST for new object allocation if it is notified of the degraded
 state.
A parameter for each OST, called
 degraded, specifies whether the OST is running in
 degraded mode or not.
To mark the OST as degraded, use:

lctl set_param obdfilter.{OST_name}.degraded=1

To mark that the OST is back in normal operation, use:

lctl set_param obdfilter.{OST_name}.degraded=0

To determine if OSTs are currently in degraded mode, use:

lctl get_param obdfilter.*.degraded

If the OST is remounted due to a reboot or other condition, the flag
 resets to
 0.
It is recommended that this be implemented by an automated script
 that monitors the status of individual RAID devices, such as MD-RAID's
 mdadm(8) command with the --monitor
 option to mark an affected device degraded or restored.

13.8.
 Running Multiple Lustre File Systems

Lustre supports multiple file systems provided the combination of
 NID:fsname is unique. Each file system must be allocated
 a unique name during creation with the
 --fsname parameter. Unique names for file systems are
 enforced if a single MGS is present. If multiple MGSs are present (for
 example if you have an MGS on every MDS) the administrator is responsible
 for ensuring file system names are unique. A single MGS and unique file
 system names provides a single point of administration and allows commands
 to be issued against the file system even if it is not mounted.
Lustre supports multiple file systems on a single MGS. With a single
 MGS fsnames are guaranteed to be unique. Lustre also allows multiple MGSs
 to co-exist. For example, multiple MGSs will be necessary if multiple file
 systems on different Lustre software versions are to be concurrently
 available. With multiple MGSs additional care must be taken to ensure file
 system names are unique. Each file system should have a unique fsname among
 all systems that may interoperate in the future.
By default, the
 mkfs.lustre command creates a file system named
 lustre. To specify a different file system name (limited
 to 8 characters) at format time, use the
 --fsname option:

mkfs.lustre --fsname=
file_system_name

Note
The MDT, OSTs and clients in the new file system must use the same
 file system name (prepended to the device name). For example, for a new
 file system named
 foo, the MDT and two OSTs would be named
 foo-MDT0000,
 foo-OST0000, and
 foo-OST0001.

To mount a client on the file system, run:

client# mount -t lustre
mgsnode:
/new_fsname
/mount_point

For example, to mount a client on file system foo at mount point
 /mnt/foo, run:

client# mount -t lustre mgsnode:/foo /mnt/foo

Note
If a client(s) will be mounted on several file systems, add the
 following line to
 /etc/xattr.conf file to avoid problems when files are
 moved between the file systems:
 lustre.* skip

Note
To ensure that a new MDT is added to an existing MGS create the MDT
 by specifying:
 --mdt --mgsnode=
 mgs_NID.

A Lustre installation with two file systems (
 foo and
 bar) could look like this, where the MGS node is
 mgsnode@tcp0 and the mount points are
 /mnt/foo and
 /mnt/bar.

mgsnode# mkfs.lustre --mgs /dev/sda
mdtfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --mdt --index=0
/dev/sdb
ossfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --ost --index=0
/dev/sda
ossfoonode# mkfs.lustre --fsname=foo --mgsnode=mgsnode@tcp0 --ost --index=1
/dev/sdb
mdtbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --mdt --index=0
/dev/sda
ossbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --ost --index=0
/dev/sdc
ossbarnode# mkfs.lustre --fsname=bar --mgsnode=mgsnode@tcp0 --ost --index=1
/dev/sdd

To mount a client on file system foo at mount point
 /mnt/foo, run:

client# mount -t lustre mgsnode@tcp0:/foo /mnt/foo

To mount a client on file system bar at mount point
 /mnt/bar, run:

client# mount -t lustre mgsnode@tcp0:/bar /mnt/bar

13.9.
 Creating a sub-directory on a given MDT

Lustre 2.4 enables individual sub-directories to be serviced by
 unique MDTs. An administrator can allocate a sub-directory to a given MDT
 using the command:

client# lfs mkdir –i
mdt_index
/mount_point/remote_dir

This command will allocate the sub-directory
 remote_dir onto the MDT of index
 mdt_index. For more information on adding additional MDTs
 and
 mdt_index see
 2.
Warning
An administrator can allocate remote sub-directories to separate
 MDTs. Creating remote sub-directories in parent directories not hosted on
 MDT0 is not recommended. This is because the failure of the parent MDT
 will leave the namespace below it inaccessible. For this reason, by
 default it is only possible to create remote sub-directories off MDT0. To
 relax this restriction and enable remote sub-directories off any MDT, an
 administrator must issue the following command on the MGS:

mgs# lctl conf_param fsname.mdt.enable_remote_dir=1

 For Lustre filesystem 'scratch', the command executed is:

mgs# lctl conf_param scratch.mdt.enable_remote_dir=1

 To verify the configuration setting execute the following command on any
 MDS:

mds# lctl get_param mdt.*.enable_remote_dir

Introduced in Lustre 2.8With Lustre software version 2.8, a new
 tunable is available to allow users with a specific group ID to create
 and delete remote and striped directories. This tunable is
 enable_remote_dir_gid. For example, setting this
 parameter to the 'wheel' or 'admin' group ID allows users with that GID
 to create and delete remote and striped directories. Setting this
 parameter to -1 on MDT0 to permanently allow any
 non-root users create and delete remote and striped directories.
 On the MGS execute the following command:

mgs# lctl conf_param fsname.mdt.enable_remote_dir_gid=-1

 For the Lustre filesystem 'scratch', the commands expands to:

mgs# lctl conf_param scratch.mdt.enable_remote_dir_gid=-1
.
 The change can be verified by executing the following command on every MDS:

mds# lctl get_param mdt.*.enable_remote_dir_gid

13.10.

 Creating a directory striped across multiple MDTs

The Lustre 2.8 DNE feature enables individual files in a given
 directory to store their metadata on separate MDTs (a striped
 directory) once additional MDTs have been added to the
 filesystem, see Section 14.7, “Adding a New MDT to a Lustre File System”.
 The result of this is that metadata requests for
 files in a striped directory are serviced by multiple MDTs and metadata
 service load is distributed over all the MDTs that service a given
 directory. By distributing metadata service load over multiple MDTs,
 performance can be improved beyond the limit of single MDT
 performance. Prior to the development of this feature all files in a
 directory must record their metadata on a single MDT.
This command to stripe a directory over
 mdt_count MDTs is:

client# lfs mkdir -c
mdt_count
/mount_point/new_directory

The striped directory feature is most useful for distributing
 single large directories (50k entries or more) across multiple MDTs,
 since it incurs more overhead than non-striped directories.

13.11.
 Setting and Retrieving Lustre Parameters

Several options are available for setting parameters in
 Lustre:
	When creating a file system, use mkfs.lustre. See
 Section 13.11.1, “Setting Tunable Parameters with
 mkfs.lustre”below.

	When a server is stopped, use tunefs.lustre. See
 Section 13.11.2, “Setting Parameters with
 tunefs.lustre”below.

	When the file system is running, use lctl to set or retrieve
 Lustre parameters. See
 Section 13.11.3, “Setting Parameters with
 lctl”and
 Section 13.11.3.5, “Reporting Current Parameter Values”below.

13.11.1. Setting Tunable Parameters with
 mkfs.lustre

When the file system is first formatted, parameters can simply be
 added as a
 --param option to the
 mkfs.lustre command. For example:

mds# mkfs.lustre --mdt --param="sys.timeout=50" /dev/sda

For more details about creating a file system,see
 Chapter 10, Configuring a Lustre File
 System. For more details about
 mkfs.lustre, see
 Chapter 43, System Configuration Utilities.

13.11.2. Setting Parameters with
 tunefs.lustre

If a server (OSS or MDS) is stopped, parameters can be added to an
 existing file system using the
 --param option to the
 tunefs.lustre command. For example:

oss# tunefs.lustre --param=failover.node=192.168.0.13@tcp0 /dev/sda

With
 tunefs.lustre, parameters are
 additive-- new parameters are specified in addition
 to old parameters, they do not replace them. To erase all old
 tunefs.lustre parameters and just use newly-specified
 parameters, run:

mds# tunefs.lustre --erase-params --param=
new_parameters

The tunefs.lustre command can be used to set any parameter settable
 via lctl conf_param and that has its own OBD device,
 so it can be specified as

 obdname|fsname.
 obdtype.
 proc_file_name=
 value. For example:

mds# tunefs.lustre --param mdt.identity_upcall=NONE /dev/sda1

For more details about
 tunefs.lustre, see
 Chapter 43, System Configuration Utilities.

13.11.3. Setting Parameters with
 lctl

When the file system is running, the
 lctl command can be used to set parameters (temporary
 or permanent) and report current parameter values. Temporary parameters
 are active as long as the server or client is not shut down. Permanent
 parameters live through server and client reboots.
Note
The lctl list_param command enables users to
 list all parameters that can be set. See
 Section 13.11.3.4, “Listing Parameters”.

For more details about the
 lctl command, see the examples in the sections below
 and
 Chapter 43, System Configuration Utilities.
13.11.3.1. Setting Temporary Parameters

Use
 lctl set_param to set temporary parameters on the
 node where it is run. These parameters map to items in
 /proc/{fs,sys}/{lnet,lustre}. The
 lctl set_param command uses this syntax:

lctl set_param [-n] [-P]
obdtype.
obdname.
proc_file_name=
value

For example:

lctl set_param osc.*.max_dirty_mb=1024
osc.myth-OST0000-osc.max_dirty_mb=32
osc.myth-OST0001-osc.max_dirty_mb=32
osc.myth-OST0002-osc.max_dirty_mb=32
osc.myth-OST0003-osc.max_dirty_mb=32
osc.myth-OST0004-osc.max_dirty_mb=32

13.11.3.2. Setting Permanent Parameters

Use lctl set_param -P or
 lctl conf_param command to set permanent parameters.
 In general, the
 lctl conf_param command can be used to specify any
 parameter settable in a
 /proc/fs/lustre file, with its own OBD device. The
 lctl conf_param command uses this syntax (same as the

 mkfs.lustre and
 tunefs.lustre commands):

obdname|fsname.
obdtype.
proc_file_name=
value)

Here are a few examples of
 lctl conf_param commands:

mgs# lctl conf_param testfs-MDT0000.sys.timeout=40
$ lctl conf_param testfs-MDT0000.mdt.identity_upcall=NONE
$ lctl conf_param testfs.llite.max_read_ahead_mb=16
$ lctl conf_param testfs-MDT0000.lov.stripesize=2M
$ lctl conf_param testfs-OST0000.osc.max_dirty_mb=29.15
$ lctl conf_param testfs-OST0000.ost.client_cache_seconds=15
$ lctl conf_param testfs.sys.timeout=40

Caution
Parameters specified with the
 lctl conf_param command are set permanently in the
 file system's configuration file on the MGS.

Introduced in Lustre 2.513.11.3.3. Setting Permanent Parameters with lctl set_param -P

The lctl set_param -P command can also
 set parameters permanently. This command must be issued on the MGS.
 The given parameter is set on every host using
 lctl upcall. Parameters map to items in
 /proc/{fs,sys}/{lnet,lustre}. The
 lctl set_param command uses this syntax:

lctl set_param -P
obdtype.
obdname.
proc_file_name=
value

For example:

lctl set_param -P osc.*.max_dirty_mb=1024
osc.myth-OST0000-osc.max_dirty_mb=32
osc.myth-OST0001-osc.max_dirty_mb=32
osc.myth-OST0002-osc.max_dirty_mb=32
osc.myth-OST0003-osc.max_dirty_mb=32
osc.myth-OST0004-osc.max_dirty_mb=32

Use
 -d(only with -P) option to delete permanent
 parameter. Syntax:

lctl set_param -P -d
obdtype.
obdname.
proc_file_name

For example:

lctl set_param -P -d osc.*.max_dirty_mb

13.11.3.4. Listing Parameters

To list Lustre or LNet parameters that are available to set, use
 the
 lctl list_param command. For example:

lctl list_param [-FR]
obdtype.
obdname

The following arguments are available for the
 lctl list_param command.

 -F Add '
 /', '
 @' or '
 =' for directories, symlinks and writeable files,
 respectively

 -R Recursively lists all parameters under the
 specified path
For example:

oss# lctl list_param obdfilter.lustre-OST0000

13.11.3.5. Reporting Current Parameter Values

To report current Lustre parameter values, use the
 lctl get_param command with this syntax:

lctl get_param [-n]
obdtype.
obdname.
proc_file_name

This example reports data on RPC service times.

oss# lctl get_param -n ost.*.ost_io.timeouts
service : cur 1 worst 30 (at 1257150393, 85d23h58m54s ago) 1 1 1 1

This example reports the amount of space this client has reserved
 for writeback cache with each OST:

client# lctl get_param osc.*.cur_grant_bytes
osc.myth-OST0000-osc-ffff8800376bdc00.cur_grant_bytes=2097152
osc.myth-OST0001-osc-ffff8800376bdc00.cur_grant_bytes=33890304
osc.myth-OST0002-osc-ffff8800376bdc00.cur_grant_bytes=35418112
osc.myth-OST0003-osc-ffff8800376bdc00.cur_grant_bytes=2097152
osc.myth-OST0004-osc-ffff8800376bdc00.cur_grant_bytes=33808384

13.12.
 Specifying NIDs and Failover

If a node has multiple network interfaces, it may have multiple NIDs,
 which must all be identified so other nodes can choose the NID that is
 appropriate for their network interfaces. Typically, NIDs are specified in
 a list delimited by commas (
 ,). However, when failover nodes are specified, the NIDs
 are delimited by a colon (
 :) or by repeating a keyword such as
 --mgsnode= or
 --servicenode=).
To display the NIDs of all servers in networks configured to work
 with the Lustre file system, run (while LNet is running):

lctl list_nids

In the example below,
 mds0 and
 mds1 are configured as a combined MGS/MDT failover pair
 and
 oss0 and
 oss1 are configured as an OST failover pair. The Ethernet
 address for
 mds0 is 192.168.10.1, and for
 mds1 is 192.168.10.2. The Ethernet addresses for
 oss0 and
 oss1 are 192.168.10.20 and 192.168.10.21
 respectively.

mds0# mkfs.lustre --fsname=testfs --mdt --mgs \
 --servicenode=192.168.10.2@tcp0 \
 -–servicenode=192.168.10.1@tcp0 /dev/sda1
mds0# mount -t lustre /dev/sda1 /mnt/test/mdt
oss0# mkfs.lustre --fsname=testfs --servicenode=192.168.10.20@tcp0 \
 --servicenode=192.168.10.21 --ost --index=0 \
 --mgsnode=192.168.10.1@tcp0 --mgsnode=192.168.10.2@tcp0 \
 /dev/sdb
oss0# mount -t lustre /dev/sdb /mnt/test/ost0
client# mount -t lustre 192.168.10.1@tcp0:192.168.10.2@tcp0:/testfs \
 /mnt/testfs
mds0# umount /mnt/mdt
mds1# mount -t lustre /dev/sda1 /mnt/test/mdt
mds1# lctl get_param mdt.testfs-MDT0000.recovery_status

Where multiple NIDs are specified separated by commas (for example,
 10.67.73.200@tcp,192.168.10.1@tcp), the two NIDs refer
 to the same host, and the Lustre software chooses the
 best one for communication. When a pair of NIDs is
 separated by a colon (for example,
 10.67.73.200@tcp:10.67.73.201@tcp), the two NIDs refer
 to two different hosts and are treated as a failover pair (the Lustre
 software tries the first one, and if that fails, it tries the second
 one.)
Two options to
 mkfs.lustre can be used to specify failover nodes.
 Introduced in Lustre software release 2.0, the
 --servicenode option is used to specify all service NIDs,
 including those for primary nodes and failover nodes. When the
 --servicenode option is used, the first service node to
 load the target device becomes the primary service node, while nodes
 corresponding to the other specified NIDs become failover locations for the
 target device. An older option,
 --failnode, specifies just the NIDS of failover nodes.
 For more information about the
 --servicenode and
 --failnode options, see
 Chapter 11, Configuring Failover in a Lustre File System.

13.13.
 Erasing a File System

If you want to erase a file system and permanently delete all the
 data in the file system, run this command on your targets:

$ "mkfs.lustre --reformat"

If you are using a separate MGS and want to keep other file systems
 defined on that MGS, then set the
 writeconf flag on the MDT for that file system. The
 writeconf flag causes the configuration logs to be
 erased; they are regenerated the next time the servers start.
To set the
 writeconf flag on the MDT:
	Unmount all clients/servers using this file system, run:

$ umount /mnt/lustre

	Permanently erase the file system and, presumably, replace it
 with another file system, run:

$ mkfs.lustre --reformat --fsname spfs --mgs --mdt --index=0 /dev/
{mdsdev}

	If you have a separate MGS (that you do not want to reformat),
 then add the
 --writeconf flag to
 mkfs.lustre on the MDT, run:

$ mkfs.lustre --reformat --writeconf --fsname spfs --mgsnode=
mgs_nid --mdt --index=0
/dev/mds_device

Note
If you have a combined MGS/MDT, reformatting the MDT reformats the
 MGS as well, causing all configuration information to be lost; you can
 start building your new file system. Nothing needs to be done with old
 disks that will not be part of the new file system, just do not mount
 them.

13.14.
 Reclaiming Reserved Disk Space

All current Lustre installations run the ldiskfs file system
 internally on service nodes. By default, ldiskfs reserves 5% of the disk
 space to avoid file system fragmentation. In order to reclaim this space,
 run the following command on your OSS for each OST in the file
 system:

tune2fs [-m reserved_blocks_percent] /dev/
{ostdev}

You do not need to shut down Lustre before running this command or
 restart it afterwards.
Warning
Reducing the space reservation can cause severe performance
 degradation as the OST file system becomes more than 95% full, due to
 difficulty in locating large areas of contiguous free space. This
 performance degradation may persist even if the space usage drops below
 95% again. It is recommended NOT to reduce the reserved disk space below
 5%.

13.15.
 Replacing an Existing OST or MDT

To copy the contents of an existing OST to a new OST (or an old MDT
 to a new MDT), follow the process for either OST/MDT backups in
 Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”or
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)”.
 For more information on removing a MDT, see
 Section 14.9.1, “Removing an MDT from the File System”.

13.16.
 Identifying To Which Lustre File an OST Object Belongs

Use this procedure to identify the file containing a given object on
 a given OST.
	On the OST (as root), run
 debugfs to display the file identifier (
 FID) of the file associated with the object.
For example, if the object is
 34976 on
 /dev/lustre/ost_test2, the debug command is:

debugfs -c -R "stat /O/0/d$((34976 % 32))/34976" /dev/lustre/ost_test2

The command output is:

debugfs 1.42.3.wc3 (15-Aug-2012)
/dev/lustre/ost_test2: catastrophic mode - not reading inode or group bitmaps
Inode: 352365 Type: regular Mode: 0666 Flags: 0x80000
Generation: 2393149953 Version: 0x0000002a:00005f81
User: 1000 Group: 1000 Size: 260096
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 512
Fragment: Address: 0 Number: 0 Size: 0
ctime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
atime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
mtime: 0x4a216b48:00000000 -- Sat May 30 13:22:16 2009
crtime: 0x4a216b3c:975870dc -- Sat May 30 13:22:04 2009
Size of extra inode fields: 24
Extended attributes stored in inode body:
 fid = "b9 da 24 00 00 00 00 00 6a fa 0d 3f 01 00 00 00 eb 5b 0b 00 00 00 0000
00 00 00 00 00 00 00 00 " (32)
 fid: objid=34976 seq=0 parent=[0x24dab9:0x3f0dfa6a:0x0] stripe=1
EXTENTS:
(0-64):4620544-4620607

	For Lustre software release 2.x file systems, the parent FID will
 be of the form [0x200000400:0x122:0x0] and can be resolved directly
 using the
 lfs fid2path [0x200000404:0x122:0x0]
 /mnt/lustre command on any Lustre client, and the process is
 complete.

	In this example the parent inode FID is an upgraded 1.x inode
 (due to the first part of the FID being below 0x200000400), the MDT
 inode number is
 0x24dab9 and generation
 0x3f0dfa6a and the pathname needs to be resolved
 using
 debugfs.

	On the MDS (as root), use
 debugfs to find the file associated with the
 inode:

debugfs -c -R "ncheck 0x24dab9" /dev/lustre/mdt_test

Here is the command output:

debugfs 1.42.3.wc2 (15-Aug-2012)
/dev/lustre/mdt_test: catastrophic mode - not reading inode or group bitmap\
s
Inode Pathname
2415289 /ROOT/brian-laptop-guest/clients/client11/~dmtmp/PWRPNT/ZD16.BMP

The command lists the inode and pathname associated with the
 object.
Note

 Debugfs' ''ncheck'' is a brute-force search that may
 take a long time to complete.

Note
To find the Lustre file from a disk LBA, follow the steps listed in
 the document at this URL:

 http://smartmontools.sourceforge.net/badblockhowto.html. Then,
 follow the steps above to resolve the Lustre filename.

Chapter 14. Lustre Maintenance

Once you have the Lustre file system up and running, you can use the procedures in this section to perform these basic Lustre maintenance tasks:
	Section 14.1, “

 Working with Inactive OSTs”

	Section 14.2, “
Finding Nodes in the Lustre File System”

	Section 14.3, “
Mounting a Server Without Lustre Service”

	Section 14.4, “
Regenerating Lustre Configuration Logs”

	Section 14.5, “
Changing a Server NID”

	Section 14.7, “Adding a New MDT to a Lustre File System”

	Section 14.8, “
Adding a New OST to a Lustre File System”

	Section 14.9, “

Removing and Restoring MDTs and OSTs”

	Section 14.9.1, “Removing an MDT from the File System”

	Section 14.9.2, “

 Working with Inactive MDTs”

	Section 14.9.3, “Removing an OST from the File System”

	Section 14.9.4, “
 Backing Up OST Configuration Files”

	Section 14.9.5, “
 Restoring OST Configuration Files”

	Section 14.9.6, “Returning a Deactivated OST to Service”

	Section 14.10, “

Aborting Recovery”

	Section 14.11, “
Determining Which Machine is Serving an OST ”

	Section 14.12, “
Changing the Address of a Failover Node”

	Section 14.13, “
 Separate a combined MGS/MDT”

14.1.

 Working with Inactive OSTs

To mount a client or an MDT with one or more inactive OSTs, run commands similar to this:
client# mount -o exclude=testfs-OST0000 -t lustre \
 uml1:/testfs /mnt/testfs
 client# lctl get_param lov.testfs-clilov-*.target_obd
To activate an inactive OST on a live client or MDT, use the
 lctl activate command on the OSC device. For example:
lctl --device 7 activate
Note
A colon-separated list can also be specified. For example,
 exclude=testfs-OST0000:testfs-OST0001.

Introduced in Lustre 2.11
Introduced in Lustre 2.4

14.2.
Finding Nodes in the Lustre File System

There may be situations in which you need to find all nodes in
 your Lustre file system or get the names of all OSTs.
To get a list of all Lustre nodes, run this command on the MGS:
lctl get_param mgs.MGS.live.*
Note
This command must be run on the MGS.

In this example, file system testfs has three
 nodes, testfs-MDT0000,
 testfs-OST0000, and
 testfs-OST0001.
mgs:/root# lctl get_param mgs.MGS.live.*
 fsname: testfs
 flags: 0x0 gen: 26
 testfs-MDT0000
 testfs-OST0000
 testfs-OST0001
To get the names of all OSTs, run this command on the MDS:
mds:/root# lctl get_param lov.*-mdtlov.target_obd
Note
This command must be run on the MDS.

In this example, there are two OSTs, testfs-OST0000 and
 testfs-OST0001, which are both active.
mgs:/root# lctl get_param lov.testfs-mdtlov.target_obd
0: testfs-OST0000_UUID ACTIVE
1: testfs-OST0001_UUID ACTIVE

14.3.
Mounting a Server Without Lustre Service

If you are using a combined MGS/MDT, but you only want to start the MGS and not the MDT, run this command:
mount -t lustre /dev/mdt_partition -o nosvc /mount_point
The mdt_partition variable is the combined MGS/MDT block device.
In this example, the combined MGS/MDT is testfs-MDT0000 and the mount point is /mnt/test/mdt.
$ mount -t lustre -L testfs-MDT0000 -o nosvc /mnt/test/mdt

14.4.
Regenerating Lustre Configuration Logs

If the Lustre file system configuration logs are in a state where
 the file system cannot be started, use the
 tunefs.lustre --writeconf command to regenerate them.
 After the writeconf command is run and the servers
 restart, the configuration logs are re-generated and stored on the MGS
 (as with a new file system).
You should only use the writeconf command if:
	The configuration logs are in a state where the file system cannot start

	A server NID is being changed

The writeconf command is destructive to some
 configuration items (e.g. OST pools information and tunables set via
 conf_param), and should be used with caution.
Caution
The OST pools feature enables a group of OSTs to be named for
	file striping purposes. If you use OST pools, be aware that running
	the writeconf command erases
	all pools information (as well as
	any other parameters set via lctl conf_param).
	We recommend that the pools definitions (and
	conf_param settings) be executed via a script,
	so they can be regenerated easily after writeconf
	is performed. However, tunables saved with lctl set_param
	-P are not erased in this case.

Note
If the MGS still holds any configuration logs, it may be
	possible to dump these logs to save any parameters stored with
	lctl conf_param by dumping the config logs on
	the MGS and saving the output:

mgs# lctl --device MGS llog_print fsname-client
mgs# lctl --device MGS llog_print fsname-MDT0000
mgs# lctl --device MGS llog_print fsname-OST0000

To regenerate Lustre file system configuration logs:
	Stop the file system services in the following order before
	 running the tunefs.lustre --writeconf command:
	
	Unmount the clients.

	Unmount the MDT(s).

	Unmount the OST(s).

	If the MGS is separate from the MDT it can remain mounted
	 during this process.

	Make sure the MDT and OST devices are available.

	Run the tunefs.lustre --writeconf command
	 on all target devices.
Run writeconf on the MDT(s) first, and then the OST(s).
	On each MDS, for each MDT run:
mds# tunefs.lustre --writeconf /dev/mdt_device

	 On each OSS, for each OST run:

oss# tunefs.lustre --writeconf /dev/ost_device

	Restart the file system in the following order:
	Mount the separate MGT, if it is not already mounted.

	Mount the MDT(s) in order, starting with MDT0000.

	Mount the OSTs in order, starting with OST0000.

	Mount the clients.

After the tunefs.lustre --writeconf command is
 run, the configuration logs are re-generated as servers connect to the
 MGS.

14.5.
Changing a Server NID

In Lustre software release 2.3 or earlier, the tunefs.lustre
 --writeconf command is used to rewrite all of the configuration files.
Introduced in Lustre 2.4If you need to change the NID on the MDT or OST, a new
 replace_nids command was added in Lustre software release 2.4 to simplify
 this process. The replace_nids command differs from tunefs.lustre
 --writeconf in that it does not erase the entire configuration log, precluding the
 need the need to execute the writeconf command on all servers and
 re-specify all permanent parameter settings. However, the writeconf command
 can still be used if desired.

Change a server NID in these situations:
	New server hardware is added to the file system, and the MDS or an OSS is being moved to the new machine.

	New network card is installed in the server.

	You want to reassign IP addresses.

To change a server NID:
	Update the LNet configuration in the /etc/modprobe.conf file so the list of server NIDs is correct. Use lctl list_nids to view the list of server NIDS.
The lctl list_nids command indicates which network(s) are
 configured to work with the Lustre file system.

	Shut down the file system in this order:
	Unmount the clients.

	Unmount the MDT.

	Unmount all OSTs.

	If the MGS and MDS share a partition, start the MGS only:
mount -t lustre MDT partition -o nosvc mount_point

	Run the replace_nids command on the MGS:
lctl replace_nids devicename nid1[,nid2,nid3 ...]
where devicename is the Lustre target name, e.g.
 testfs-OST0013

	If the MGS and MDS share a partition, stop the MGS:
umount mount_point

Note
The replace_nids command also cleans
 all old, invalidated records out of the configuration log, while
 preserving all other current settings.

Note
The previous configuration log is backed up on the MGS
 disk with the suffix '.bak'.

14.6. Clearing configuration

	 This command runs on MGS node having the MGS device mounted with
	 -o nosvc. It cleans up configuration files
	 stored in the CONFIGS/ directory of any records marked SKIP.
	 If the device name is given, then the specific logs for that
	 filesystem (e.g. testfs-MDT0000) are processed. Otherwise, if a
	 filesystem name is given then all configuration files are cleared.
	 The previous configuration log is backed up on the MGS disk with
	 the suffix 'config.timestamp.bak'. Eg: Lustre-MDT0000-1476454535.bak.
	
 To clear a configuration:
	Shut down the file system in this order:
	Unmount the clients.

	Unmount the MDT.

	Unmount all OSTs.

	
		 If the MGS and MDS share a partition, start the MGS only
		 using "nosvc" option.
	
mount -t lustre MDT partition -o nosvc mount_point

	Run the clear_conf command on the MGS:
		
lctl clear_conf config

			Example: To clear the configuration for
			MDT0000 on a filesystem named
			testfs
	
mgs# lctl clear_conf testfs-MDT0000

14.7. Adding a New MDT to a Lustre File System

Additional MDTs can be added using the DNE feature to serve one
 or more remote sub-directories within a filesystem, in order to
 increase the total number of files that can be created in the
 filesystem, to increase aggregate metadata performance, or to isolate
 user or application workloads from other users of the filesystem. It
 is possible to have multiple remote sub-directories reference the
 same MDT. However, the root directory will always be located on
 MDT0. To add a new MDT into the file system:
	Discover the maximum MDT index. Each MDT must have unique index.

client$ lctl dl | grep mdc
36 UP mdc testfs-MDT0000-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
37 UP mdc testfs-MDT0001-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
38 UP mdc testfs-MDT0002-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5
39 UP mdc testfs-MDT0003-mdc-ffff88004edf3c00 4c8be054-144f-9359-b063-8477566eb84e 5

	Add the new block device as a new MDT at the next available
 index. In this example, the next available index is 4.

mds# mkfs.lustre --reformat --fsname=testfs --mdt --mgsnode=mgsnode --index 4 /dev/mdt4_device

	Mount the MDTs.

mds# mount –t lustre /dev/mdt4_blockdevice /mnt/mdt4

	In order to start creating new files and directories on the
	 new MDT(s) they need to be attached into the namespace at one or
	 more subdirectories using the lfs mkdir command.
	 All files and directories below those created with
	 lfs mkdir will also be created on the same MDT
	 unless otherwise specified.
	

client# lfs mkdir -i 3 /mnt/testfs/new_dir_on_mdt3
client# lfs mkdir -i 4 /mnt/testfs/new_dir_on_mdt4
client# lfs mkdir -c 4 /mnt/testfs/new_directory_striped_across_4_mdts

14.8.
Adding a New OST to a Lustre File System

A new OST can be added to existing Lustre file system on either
 an existing OSS node or on a new OSS node. In order to keep client IO
 load balanced across OSS nodes for maximum aggregate performance, it is
 not recommended to configure different numbers of OSTs to each OSS node.

	 Add a new OST by using mkfs.lustre as when
	 the filesystem was first formatted, see
	 4 for details. Each new OST
	 must have a unique index number, use lctl dl to
	 see a list of all OSTs. For example, to add a new OST at index 12
	 to the testfs filesystem run following commands
	 should be run on the OSS:
oss# mkfs.lustre --fsname=testfs --mgsnode=mds16@tcp0 --ost --index=12 /dev/sda
oss# mkdir -p /mnt/testfs/ost12
oss# mount -t lustre /dev/sda /mnt/testfs/ost12

	Balance OST space usage (possibly).
The file system can be quite unbalanced when new empty OSTs
	 are added to a relatively full filesystem. New file creations are
	 automatically balanced to favour the new OSTs. If this is a scratch
	 file system or files are pruned at regular intervals, then no further
	 work may be needed to balance the OST space usage as new files being
	 created will preferentially be placed on the less full OST(s). As old
	 files are deleted, they will release space on the old OST(s).
Files existing prior to the expansion can optionally be
	 rebalanced using the lfs_migrate utility.
	 This redistributes file data over the entire set of OSTs.
For example, to rebalance all files within the directory
	 /mnt/lustre/dir, enter:
client# lfs_migrate /mnt/lustre/dir
To migrate files within the /test file
	 system on OST0004 that are larger than 4GB in
	 size to other OSTs, enter:
client# lfs find /test --ost test-OST0004 -size +4G | lfs_migrate -y
See Section 39.2, “

 lfs_migrate
 ” for details.

14.9.

Removing and Restoring MDTs and OSTs

OSTs and DNE MDTs can be removed from and restored to a Lustre
 filesystem. Deactivating an OST means that it is temporarily or
 permanently marked unavailable. Deactivating an OST on the MDS means
 it will not try to allocate new objects there or perform OST recovery,
 while deactivating an OST the client means it will not wait for OST
 recovery if it cannot contact the OST and will instead return an IO
 error to the application immediately if files on the OST are accessed.
 An OST may be permanently deactivated from the file system,
 depending on the situation and commands used.
Note
A permanently deactivated MDT or OST still appears in the
 filesystem configuration until the configuration is regenerated with
 writeconf or it is replaced with a new MDT or OST
 at the same index and permanently reactivated. A deactivated OST
	will not be listed by lfs df.

You may want to temporarily deactivate an OST on the MDS to
 prevent new files from being written to it in several situations:
	A hard drive has failed and a RAID resync/rebuild is underway,
 though the OST can also be marked degraded by
 the RAID system to avoid allocating new files on the slow OST which
 can reduce performance, see Section 13.7, “
 Handling Degraded OST RAID Arrays”
 for more details.

	OST is nearing its space capacity, though the MDS will already
 try to avoid allocating new files on overly-full OSTs if possible,
 see Section 38.7, “Allocating Free Space on OSTs” for details.

	MDT/OST storage or MDS/OSS node has failed, and will not
 be available for some time (or forever), but there is still a
 desire to continue using the filesystem before it is repaired.

Introduced in Lustre 2.414.9.1. Removing an MDT from the File System

If the MDT is permanently inaccessible,
 lfs rm_entry {directory} can be used to delete the
 directory entry for the unavailable MDT. Using rmdir
 would otherwise report an IO error due to the remote MDT being inactive.
 Please note that if the MDT is available, standard
 rm -r should be used to delete the remote directory.
 After the remote directory has been removed, the administrator should
 mark the MDT as permanently inactive with:
lctl conf_param {MDT name}.mdc.active=0
A user can identify which MDT holds a remote sub-directory using
 the lfs utility. For example:
client$ lfs getstripe --mdt-index /mnt/lustre/remote_dir1
1
client$ mkdir /mnt/lustre/local_dir0
client$ lfs getstripe --mdt-index /mnt/lustre/local_dir0
0

The lfs getstripe --mdt-index command
 returns the index of the MDT that is serving the given directory.

Introduced in Lustre 2.414.9.2.

 Working with Inactive MDTs

Files located on or below an inactive MDT are inaccessible until
 the MDT is activated again. Clients accessing an inactive MDT will receive
 an EIO error.

14.9.3. Removing an OST from the File System

When deactivating an OST, note that the client and MDS each have
 an OSC device that handles communication with the corresponding OST.
 To remove an OST from the file system:
	If the OST is functional, and there are files located on
 the OST that need to be migrated off of the OST, the file creation
 for that OST should be temporarily deactivated on the MDS (each MDS
	 if running with multiple MDS nodes in DNE mode).

	Introduced in Lustre 2.9With Lustre 2.9 and later, the MDS should be
 set to only disable file creation on that OST by setting
 max_create_count to zero:

mds# lctl set_param osp.osc_name.max_create_count=0

 This ensures that files deleted or migrated off of the OST
 will have their corresponding OST objects destroyed, and the space
 will be freed. For example, to disable OST0000
 in the filesystem testfs, run:

mds# lctl set_param osp.testfs-OST0000-osc-MDT*.max_create_count=0

 on each MDS in the testfs filesystem.

	With older versions of Lustre, to deactivate the OSC on the
 MDS node(s) use:

mds# lctl set_param osp.osc_name.active=0

 This will prevent the MDS from attempting any communication with
 that OST, including destroying objects located thereon. This is
 fine if the OST will be removed permanently, if the OST is not
 stable in operation, or if it is in a read-only state. Otherwise,
 the free space and objects on the OST will not decrease when
 files are deleted, and object destruction will be deferred until
 the MDS reconnects to the OST.
For example, to deactivate OST0000 in
 the filesystem testfs, run:

mds# lctl set_param osp.testfs-OST0000-osc-MDT*.active=0

 Deactivating the OST on the MDS does not
 prevent use of existing objects for read/write by a client.
Note
If migrating files from a working OST, do not deactivate
 the OST on clients. This causes IO errors when accessing files
 located there, and migrating files on the OST would fail.

Caution
Do not use lctl conf_param to
 deactivate the OST if it is still working, as this immediately
 and permanently deactivates it in the file system configuration
 on both the MDS and all clients.

	Discover all files that have objects residing on the
 deactivated OST. Depending on whether the deactivated OST is
 available or not, the data from that OST may be migrated to
 other OSTs, or may need to be restored from backup.
	If the OST is still online and available, find all
 files with objects on the deactivated OST, and copy them
 to other OSTs in the file system to:
client# lfs find --ost ost_name /mount/point | lfs_migrate -y
Note that if multiple OSTs are being deactivated at one
	 time, the lfs find command can take multiple
	 --ost arguments, and will return files that
	 are located on any of the specified OSTs.
	

	If the OST is no longer available, delete the files
 on that OST and restore them from backup:

client# lfs find --ost ost_uuid -print0 /mount/point |
 tee /tmp/files_to_restore | xargs -0 -n 1 unlink

 The list of files that need to be restored from backup is
 stored in /tmp/files_to_restore. Restoring
 these files is beyond the scope of this document.

	Deactivate the OST.
	
 If there is expected to be a replacement OST in some short
 time (a few days), the OST can temporarily be deactivated on
 the clients using:

client# lctl set_param osc.fsname-OSTnumber-*.active=0

Note
This setting is only temporary and will be reset
 if the clients are remounted or rebooted. It needs to be run
 on all clients.

	If there is not expected to be a replacement for this OST in
 the near future, permanently deactivate it on all clients and
	 the MDS by running the following command on the MGS:

mgs# lctl conf_param ost_name.osc.active=0
Note
A deactivated OST still appears in the file system
 configuration, though a replacement OST can be created using the
 mkfs.lustre --replace option, see
 Section 14.9.5, “
 Restoring OST Configuration Files”.

14.9.4.
 Backing Up OST Configuration Files

If the OST device is still accessible, then the Lustre
 configuration files on the OST should be backed up and saved for
 future use in order to avoid difficulties when a replacement OST is
 returned to service. These files rarely change, so they can and
 should be backed up while the OST is functional and accessible. If
 the deactivated OST is still available to mount (i.e. has not
 permanently failed or is unmountable due to severe corruption), an
 effort should be made to preserve these files.
	Mount the OST file system.

oss# mkdir -p /mnt/ost
oss# mount -t ldiskfs /dev/ost_device /mnt/ost

	Back up the OST configuration files.

oss# tar cvf ost_name.tar -C /mnt/ost last_rcvd \
 CONFIGS/ O/0/LAST_ID

	 Unmount the OST file system.
oss# umount /mnt/ost

14.9.5.
 Restoring OST Configuration Files

If the original OST is still available, it is best to follow the
 OST backup and restore procedure given in either
 Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”, or
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)” and
 Section 18.4, “
 Restoring a File-Level Backup”.
To replace an OST that was removed from service due to corruption
 or hardware failure, the replacement OST needs to be formatted using
 mkfs.lustre, and the Lustre file system configuration
 should be restored, if available. Any objects stored on the OST will
 be permanently lost, and files using the OST should be deleted and/or
 restored from backup.
Introduced in Lustre 2.5With Lustre 2.5 and later, it is possible to
 replace an OST to the same index without restoring the configuration
 files, using the --replace option at format time.

oss# mkfs.lustre --ost --reformat --replace --index=old_ost_index \
 other_options /dev/new_ost_dev

 The MDS and OSS will negotiate the LAST_ID value
 for the replacement OST.

If the OST configuration files were not backed up, due to the
 OST file system being completely inaccessible, it is still possible to
 replace the failed OST with a new one at the same OST index.
	For older versions, format the OST file system without the
 --replace option and restore the saved
 configuration:

oss# mkfs.lustre --ost --reformat --index=old_ost_index \
 other_options /dev/new_ost_dev

	 Mount the OST file system.

oss# mkdir /mnt/ost
oss# mount -t ldiskfs /dev/new_ost_dev /mnt/ost

	Restore the OST configuration files, if available.

oss# tar xvf ost_name.tar -C /mnt/ost

	Recreate the OST configuration files, if unavailable.
Follow the procedure in
 Section 34.3.4, “Fixing a Bad LAST_ID on an OST” to recreate the LAST_ID
 file for this OST index. The last_rcvd file
 will be recreated when the OST is first mounted using the default
 parameters, which are normally correct for all file systems. The
 CONFIGS/mountdata file is created by
 mkfs.lustre at format time, but has flags set
 that request it to register itself with the MGS. It is possible to
 copy the flags from another working OST (which should be the same):

oss1# debugfs -c -R "dump CONFIGS/mountdata /tmp" /dev/other_osdev
oss1# scp /tmp/mountdata oss0:/tmp/mountdata
oss0# dd if=/tmp/mountdata of=/mnt/ost/CONFIGS/mountdata bs=4 count=1 seek=5 skip=5 conv=notrunc

	 Unmount the OST file system.

oss# umount /mnt/ost

14.9.6. Returning a Deactivated OST to Service

If the OST was permanently deactivated, it needs to be
 reactivated in the MGS configuration.

mgs# lctl conf_param ost_name.osc.active=1

 If the OST was temporarily deactivated, it needs to be reactivated on
 the MDS and clients.

mds# lctl set_param osp.fsname-OSTnumber-*.active=1
client# lctl set_param osc.fsname-OSTnumber-*.active=1

14.10.

Aborting Recovery

You can abort recovery with either the lctl utility or by mounting the target with the abort_recov option (mount -o abort_recov). When starting a target, run:
mds# mount -t lustre -L mdt_name -o abort_recov /mount_point
Note
The recovery process is blocked until all OSTs are available.

14.11.
Determining Which Machine is Serving an OST

In the course of administering a Lustre file system, you may need to determine which
 machine is serving a specific OST. It is not as simple as identifying the machine’s IP
 address, as IP is only one of several networking protocols that the Lustre software uses and,
 as such, LNet does not use IP addresses as node identifiers, but NIDs instead. To identify the
 NID that is serving a specific OST, run one of the following commands on a client (you do not
 need to be a root user):

client$ lctl get_param osc.fsname-OSTnumber*.ost_conn_uuid

 For example:

client$ lctl get_param osc.*-OST0000*.ost_conn_uuid
osc.testfs-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
-
 OR -

client$ lctl get_param osc.*.ost_conn_uuid
osc.testfs-OST0000-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0001-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0002-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0003-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp
osc.testfs-OST0004-osc-f1579000.ost_conn_uuid=192.168.20.1@tcp

14.12.
Changing the Address of a Failover Node

To change the address of a failover node (e.g, to use node X instead of node Y), run
 this command on the OSS/OST partition (depending on which option was used to originally
 identify the NID):

oss# tunefs.lustre --erase-params --servicenode=NID /dev/ost_device

 or

oss# tunefs.lustre --erase-params --failnode=NID /dev/ost_device

 For more information about the --servicenode and
 --failnode options, see Chapter 11, Configuring Failover in a Lustre File System.

14.13.
 Separate a combined MGS/MDT

These instructions assume the MGS node will be the same as the MDS
 node. For instructions on how to move MGS to a different node, see
 Section 14.5, “
Changing a Server NID”.
These instructions are for doing the split without shutting down
 other servers and clients.
	Stop the MDS.
Unmount the MDT
umount -f /dev/mdt_device

	Create the MGS.
mds# mkfs.lustre --mgs --device-size=size /dev/mgs_device

	Copy the configuration data from MDT disk to the new MGS disk.
mds# mount -t ldiskfs -o ro /dev/mdt_device /mdt_mount_point
mds# mount -t ldiskfs -o rw /dev/mgs_device /mgs_mount_point
mds# cp -r /mdt_mount_point/CONFIGS/filesystem_name-* /mgs_mount_point/CONFIGS/.
mds# umount /mgs_mount_point
mds# umount /mdt_mount_point
See Section 14.4, “
Regenerating Lustre Configuration Logs” for alternative method.

	Start the MGS.
mgs# mount -t lustre /dev/mgs_device /mgs_mount_point
Check to make sure it knows about all your file system
mgs:/root# lctl get_param mgs.MGS.filesystems

	Remove the MGS option from the MDT, and set the new MGS nid.
mds# tunefs.lustre --nomgs --mgsnode=new_mgs_nid /dev/mdt-device

	Start the MDT.
mds# mount -t lustre /dev/mdt_device /mdt_mount_point
Check to make sure the MGS configuration looks right:
mgs# lctl get_param mgs.MGS.live.filesystem_name

Chapter 15. Managing Lustre Networking (LNet)

This chapter describes some tools for managing Lustre networking (LNet) and includes the
 following sections:
	Section 15.1, “
 Updating the Health Status of a Peer or Router”

	Section 15.2, “Starting and Stopping LNet”

	Section 15.3, “Hardware Based Multi-Rail
 Configurations with LNet”

	Section 15.4, “Load Balancing with an InfiniBand* Network”

	Section 15.5, “Dynamically Configuring
 LNet Routes”

15.1.
 Updating the Health Status of a Peer or Router

There are two mechanisms to update the health status of a peer or a router:
	LNet can actively check health status of all routers and mark them as dead or alive automatically. By default, this is off. To enable it set auto_down and if desired check_routers_before_use. This initial check may cause a pause equal to router_ping_timeout at system startup, if there are dead routers in the system.

	When there is a communication error, all LNDs notify LNet that the peer (not necessarily a router) is down. This mechanism is always on, and there is no parameter to turn it off. However, if you set the LNet module parameter auto_down to 0, LNet ignores all such peer-down notifications.

Several key differences in both mechanisms:
	The router pinger only checks routers for their health, while LNDs notices all dead peers, regardless of whether they are a router or not.

	The router pinger actively checks the router health by sending pings, but LNDs only notice a dead peer when there is network traffic going on.

	The router pinger can bring a router from alive to dead or vice versa, but LNDs can only bring a peer down.

Introduced in Lustre 2.4

15.2. Starting and Stopping LNet

The Lustre software automatically starts and stops LNet, but it can also be manually
 started in a standalone manner. This is particularly useful to verify that your networking
 setup is working correctly before you attempt to start the Lustre file system.
15.2.1. Starting LNet

To start LNet, run:
$ modprobe lnet
$ lctl network up
To see the list of local NIDs, run:
$ lctl list_nids
This command tells you the network(s) configured to work with the Lustre file
 system.
If the networks are not correctly setup, see the modules.conf "networks=" line and make sure the network layer modules are correctly installed and configured.
To get the best remote NID, run:
$ lctl which_nid NIDs
where NIDs is the list of available NIDs.
This command takes the "best" NID from a list of the NIDs of a remote host. The "best" NID is the one that the local node uses when trying to communicate with the remote node.
15.2.1.1. Starting Clients

To start a TCP client, run:
mount -t lustre mdsnode:/mdsA/client /mnt/lustre/
To start an Elan client, run:
mount -t lustre 2@elan0:/mdsA/client /mnt/lustre

15.2.2. Stopping LNet

Before the LNet modules can be removed, LNet references must be removed. In general,
 these references are removed automatically when the Lustre file system is shut down, but for
 standalone routers, an explicit step is needed to stop LNet. Run:
lctl network unconfigure
Note
Attempting to remove Lustre modules prior to stopping the network may result in a
 crash or an LNet hang. If this occurs, the node must be rebooted (in most cases). Make
 sure that the Lustre network and Lustre file system are stopped prior to unloading the
 modules. Be extremely careful using rmmod -f.

To unconfigure the LNet network, run:
modprobe -r lnd_and_lnet_modules
Note

To remove all Lustre modules, run:
$ lustre_rmmod

15.3. Hardware Based Multi-Rail
 Configurations with LNet

To aggregate bandwidth across both rails of a dual-rail IB cluster
 (o2iblnd) [1] using LNet, consider these points:
	LNet can work with multiple rails, however, it does not load
 balance across them. The actual rail used for any communication is
 determined by the peer NID.

	Hardware multi-rail LNet configurations do not provide an
 additional level of network fault tolerance. The configurations
 described below are for bandwidth aggregation only.

	A Lustre node always uses the same local NID to communicate with a
 given peer NID. The criteria used to determine the local NID are:
	Introduced in Lustre 2.5Lowest route priority number (lower number,
 higher priority).

	Fewest hops (to minimize routing), and

	Appears first in the "networks"
 or "ip2nets" LNet configuration strings

[1] Hardware multi-rail configurations are only supported by o2iblnd;
 other IB LNDs do not support multiple interfaces.

15.4. Load Balancing with an InfiniBand* Network

A Lustre file system contains OSSs with two InfiniBand HCAs. Lustre clients have only one
 InfiniBand HCA using OFED-based Infiniband ''o2ib'' drivers. Load
 balancing between the HCAs on the OSS is accomplished through LNet.
15.4.1. Setting Up lustre.conf for Load Balancing

To configure LNet for load balancing on clients and servers:
	Set the lustre.conf options.
Depending on your configuration, set lustre.conf options as follows:
	Dual HCA OSS server

options lnet networks="o2ib0(ib0),o2ib1(ib1)"
	Client with the odd IP address

options lnet ip2nets="o2ib0(ib0) 192.168.10.[103-253/2]"
	Client with the even IP address

options lnet ip2nets="o2ib1(ib0) 192.168.10.[102-254/2]"

	Run the modprobe lnet command and create a combined MGS/MDT file system.
The following commands create an MGS/MDT or OST file system and mount the targets on the servers.
modprobe lnet
mkfs.lustre --fsname lustre --mgs --mdt /dev/mdt_device
mkdir -p /mount_point
mount -t lustre /dev/mdt_device /mount_point
For example:
modprobe lnet
mds# mkfs.lustre --fsname lustre --mdt --mgs /dev/sda
mds# mkdir -p /mnt/test/mdt
mds# mount -t lustre /dev/sda /mnt/test/mdt
mds# mount -t lustre mgs@o2ib0:/lustre /mnt/mdt
oss# mkfs.lustre --fsname lustre --mgsnode=mds@o2ib0 --ost --index=0 /dev/sda
oss# mkdir -p /mnt/test/mdt
oss# mount -t lustre /dev/sda /mnt/test/ost
oss# mount -t lustre mgs@o2ib0:/lustre /mnt/ost0

	Mount the clients.
client# mount -t lustre mgs_node:/fsname /mount_point
This example shows an IB client being mounted.
client# mount -t lustre
192.168.10.101@o2ib0,192.168.10.102@o2ib1:/mds/client /mnt/lustre

As an example, consider a two-rail IB cluster running the OFED stack with these IPoIB
 address assignments.
 ib0 ib1
Servers 192.168.0.* 192.168.1.*
Clients 192.168.[2-127].* 192.168.[128-253].*
You could create these configurations:
	A cluster with more clients than servers. The fact that an individual client cannot get two rails of bandwidth is unimportant because the servers are typically the actual bottleneck.

ip2nets="o2ib0(ib0), o2ib1(ib1) 192.168.[0-1].* \
 #all servers;\
 o2ib0(ib0) 192.168.[2-253].[0-252/2] #even cl\
ients;\
 o2ib1(ib1) 192.168.[2-253].[1-253/2] #odd cli\
ents"
This configuration gives every server two NIDs, one on each network, and statically load-balances clients between the rails.
	A single client that must get two rails of bandwidth, and it does not matter if the maximum aggregate bandwidth is only (# servers) * (1 rail).

ip2nets=" o2ib0(ib0) 192.168.[0-1].[0-252/2] \
 #even servers;\
 o2ib1(ib1) 192.168.[0-1].[1-253/2] \
 #odd servers;\
 o2ib0(ib0),o2ib1(ib1) 192.168.[2-253].* \
 #clients"
This configuration gives every server a single NID on one rail or the other. Clients have a NID on both rails.
	All clients and all servers must get two rails of bandwidth.

ip2nets=â€ o2ib0(ib0),o2ib2(ib1) 192.168.[0-1].[0-252/2] \
 #even servers;\
 o2ib1(ib0),o2ib3(ib1) 192.168.[0-1].[1-253/2] \
#odd servers;\
 o2ib0(ib0),o2ib3(ib1) 192.168.[2-253].[0-252/2) \
#even clients;\
 o2ib1(ib0),o2ib2(ib1) 192.168.[2-253].[1-253/2) \
#odd clients"
This configuration includes two additional proxy o2ib networks to work around the
 simplistic NID selection algorithm in the Lustre software. It connects "even"
 clients to "even" servers with o2ib0 on
 rail0, and "odd" servers with o2ib3 on
 rail1. Similarly, it connects "odd" clients to
 "odd" servers with o2ib1 on rail0, and
 "even" servers with o2ib2 on rail1.

15.5. Dynamically Configuring
 LNet Routes

Two scripts are provided:
 lustre/scripts/lustre_routes_config and
 lustre/scripts/lustre_routes_conversion.
lustre_routes_config sets or cleans up LNet routes
 from the specified config file. The
 /etc/sysconfig/lnet_routes.conf file can be used to
 automatically configure routes on LNet startup.
lustre_routes_conversion converts a legacy routes
 configuration file to the new syntax, which is parsed by
 lustre_routes_config.
15.5.1.
 lustre_routes_config

lustre_routes_config usage is as follows
lustre_routes_config [--setup|--cleanup|--dry-run|--verbose] config_file
 --setup: configure routes listed in config_file
 --cleanup: unconfigure routes listed in config_file
 --dry-run: echo commands to be run, but do not execute them
 --verbose: echo commands before they are executed
 The format of the file which is passed into the script is as
 follows:
network: { gateway: gateway@exit_network [hop: hop] [priority: priority] }
 An LNet router is identified when its local NID appears within the
 list of routes. However, this can not be achieved by the use of this
 script, since the script only adds extra routes after the router is
 identified. To ensure that a router is identified correctly, make sure to
 add its local NID in the routes parameter in the modprobe lustre
 configuration file. See Section 42.1, “

 Introduction”.

15.5.2. lustre_routes_conversion

lustre_routes_conversion usage is as follows:
lustre_routes_conversion legacy_file new_file
lustre_routes_conversion takes as a first parameter a file with routes configured as follows:
network [hop] gateway@exit network[:priority];
The script then converts each routes entry in the provided file to:
network: { gateway: gateway@exit network [hop: hop] [priority: priority] }
and appends each converted entry to the output file passed in as the second parameter to the script.

15.5.3. Route Configuration Examples

Below is an example of a legacy LNet route configuration. A legacy configuration file can have multiple entries.
tcp1 10.1.1.2@tcp0:1;
tcp2 10.1.1.3@tcp0:2;
tcp3 10.1.1.4@tcp0;
Below is an example of the converted LNet route configuration. The following would be the result of the lustre_routes_conversion script, when run on the above legacy entries.
tcp1: { gateway: 10.1.1.2@tcp0 priority: 1 }
tcp2: { gateway: 10.1.1.2@tcp0 priority: 2 }
tcp1: { gateway: 10.1.1.4@tcp0 }

Chapter 16. LNet Software Multi-Rail

This chapter describes LNet Software Multi-Rail configuration and
 administration.
	Section 16.1, “Multi-Rail Overview”
Section 16.2, “Configuring Multi-Rail”
Section 16.3, “Notes on routing with Multi-Rail”
Section 16.4, “LNet Health”

16.1. Multi-Rail Overview

In computer networking, multi-rail is an arrangement in which two or
 more network interfaces to a single network on a computer node are employed,
 to achieve increased throughput. Multi-rail can also be where a node has
 one or more interfaces to multiple, even different kinds of networks, such
 as Ethernet, Infiniband, and Intel® Omni-Path. For Lustre clients,
 multi-rail generally presents the combined network capabilities as a single
 LNet network. Peer nodes that are multi-rail capable are established during
 configuration, as are user-defined interface-section policies.
The following link contains a detailed high-level design for the
 feature:

 Multi-Rail High-Level Design

Introduced in Lustre 2.12

16.2. Configuring Multi-Rail

Every node using multi-rail networking needs to be properly
 configured. Multi-rail uses lnetctl and the LNet
 Configuration Library for configuration. Configuring multi-rail for a
 given node involves two tasks:
	Configuring multiple network interfaces present on the
 local node.

	Adding remote peers that are multi-rail capable (are
 connected to one or more common networks with at least two interfaces).

This section is a supplement to
 Section 9.1.3, “Adding, Deleting and Showing
 Networks” and contains further
 examples for Multi-Rail configurations.
For information on the dynamic peer discovery feature added in
 Lustre Release 2.11.0, see
 Section 9.1.5, “Dynamic Peer Discovery”.
16.2.1. Configure Multiple Interfaces on the Local Node

Example lnetctl add command with multiple
 interfaces in a Multi-Rail configuration:
lnetctl net add --net tcp --if eth0,eth1
Example of YAML net show:
lnetctl net show -v
net:
 - net type: lo
 local NI(s):
 - nid: 0@lo
 status: up
 statistics:
 send_count: 0
 recv_count: 0
 drop_count: 0
 tunables:
 peer_timeout: 0
 peer_credits: 0
 peer_buffer_credits: 0
 credits: 0
 lnd tunables:
 tcp bonding: 0
 dev cpt: 0
 CPT: "[0]"
 - net type: tcp
 local NI(s):
 - nid: 192.168.122.10@tcp
 status: up
 interfaces:
 0: eth0
 statistics:
 send_count: 0
 recv_count: 0
 drop_count: 0
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
 lnd tunables:
 tcp bonding: 0
 dev cpt: -1
 CPT: "[0]"
 - nid: 192.168.122.11@tcp
 status: up
 interfaces:
 0: eth1
 statistics:
 send_count: 0
 recv_count: 0
 drop_count: 0
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
 lnd tunables:
 tcp bonding: 0
 dev cpt: -1
 CPT: "[0]"

16.2.2. Deleting Network Interfaces

Example delete with lnetctl net del:
Assuming the network configuration is as shown above with the
 lnetctl net show -v in the previous section, we can
 delete a net with following command:
lnetctl net del --net tcp --if eth0
The resultant net information would look like:
lnetctl net show -v
net:
 - net type: lo
 local NI(s):
 - nid: 0@lo
 status: up
 statistics:
 send_count: 0
 recv_count: 0
 drop_count: 0
 tunables:
 peer_timeout: 0
 peer_credits: 0
 peer_buffer_credits: 0
 credits: 0
 lnd tunables:
 tcp bonding: 0
 dev cpt: 0
 CPT: "[0,1,2,3]"
The syntax of a YAML file to perform a delete would be:
- net type: tcp
 local NI(s):
 - nid: 192.168.122.10@tcp
 interfaces:
 0: eth0

16.2.3. Adding Remote Peers that are Multi-Rail Capable

The following example lnetctl peer add
 command adds a peer with 2 nids, with
 192.168.122.30@tcp being the primary nid:
lnetctl peer add --prim_nid 192.168.122.30@tcp --nid 192.168.122.30@tcp,192.168.122.31@tcp

The resulting lnetctl peer show would be:

lnetctl peer show -v
peer:
 - primary nid: 192.168.122.30@tcp
 Multi-Rail: True
 peer ni:
 - nid: 192.168.122.30@tcp
 state: NA
 max_ni_tx_credits: 8
 available_tx_credits: 8
 min_tx_credits: 7
 tx_q_num_of_buf: 0
 available_rtr_credits: 8
 min_rtr_credits: 8
 refcount: 1
 statistics:
 send_count: 2
 recv_count: 2
 drop_count: 0
 - nid: 192.168.122.31@tcp
 state: NA
 max_ni_tx_credits: 8
 available_tx_credits: 8
 min_tx_credits: 7
 tx_q_num_of_buf: 0
 available_rtr_credits: 8
 min_rtr_credits: 8
 refcount: 1
 statistics:
 send_count: 1
 recv_count: 1
 drop_count: 0

The following is an example YAML file for adding a peer:
addPeer.yaml
peer:
 - primary nid: 192.168.122.30@tcp
 Multi-Rail: True
 peer ni:
 - nid: 192.168.122.31@tcp

16.2.4. Deleting Remote Peers

Example of deleting a single nid of a peer (192.168.122.31@tcp):

lnetctl peer del --prim_nid 192.168.122.30@tcp --nid 192.168.122.31@tcp
Example of deleting the entire peer:
lnetctl peer del --prim_nid 192.168.122.30@tcp
Example of deleting a peer via YAML:
Assuming the following peer configuration:
peer:
 - primary nid: 192.168.122.30@tcp
 Multi-Rail: True
 peer ni:
 - nid: 192.168.122.30@tcp
 state: NA
 - nid: 192.168.122.31@tcp
 state: NA
 - nid: 192.168.122.32@tcp
 state: NA

You can delete 192.168.122.32@tcp as follows:

delPeer.yaml
peer:
 - primary nid: 192.168.122.30@tcp
 Multi-Rail: True
 peer ni:
 - nid: 192.168.122.32@tcp

% lnetctl import --del < delPeer.yaml

16.3. Notes on routing with Multi-Rail

Multi-Rail configuration can be applied on the Router to aggregate
 the interfaces performance.
16.3.1. Multi-Rail Cluster Example

The below example outlines a simple system where all the Lustre
 nodes are MR capable. Each node in the cluster has two interfaces.
Figure 16.1. Routing Configuration with Multi-Rail
[image: Routing Configuration with Multi-Rail]

The routers can aggregate the interfaces on each side of the network
 by configuring them on the appropriate network.
An example configuration:
Routers
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl net add --net o2ib1 --if ib2,ib3
lnetctl peer add --nid <peer1-nidA>@o2ib,<peer1-nidB>@o2ib,...
lnetctl peer add --nid <peer2-nidA>@o2ib1,<peer2-nidB>>@o2ib1,...
lnetctl set routing 1

Clients
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl route add --net o2ib1 --gateway <rtrX-nidA>@o2ib
lnetctl peer add --nid <rtrX-nidA>@o2ib,<rtrX-nidB>@o2ib

Servers
lnetctl net add --net o2ib1 --if ib0,ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidA>@o2ib1
lnetctl peer add --nid <rtrX-nidA>@o2ib1,<rtrX-nidB>@o2ib1
In the above configuration the clients and the servers are
 configured with only one route entry per router. This works because the
 routers are MR capable. By adding the routers as peers with multiple
 interfaces to the clients and the servers, when sending to the router the
 MR algorithm will ensure that bot interfaces of the routers are used.

However, as of the Lustre 2.10 release LNet Resiliency is still
 under development and single interface failure will still cause the entire
 router to go down.

16.3.2. Utilizing Router Resiliency

Currently, LNet provides a mechanism to monitor each route entry.
 LNet pings each gateway identified in the route entry on regular,
 configurable interval to ensure that it is alive. If sending over a
 specific route fails or if the router pinger determines that the gateway
 is down, then the route is marked as down and is not used. It is
 subsequently pinged on regular, configurable intervals to determine when
 it becomes alive again.
This mechanism can be combined with the MR feature in Lustre 2.10 to
 add this router resiliency feature to the configuration.
Routers
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl net add --net o2ib1 --if ib2,ib3
lnetctl peer add --nid <peer1-nidA>@o2ib,<peer1-nidB>@o2ib,...
lnetctl peer add --nid <peer2-nidA>@o2ib1,<peer2-nidB>@o2ib1,...
lnetctl set routing 1

Clients
lnetctl net add --net o2ib0 --if ib0,ib1
lnetctl route add --net o2ib1 --gateway <rtrX-nidA>@o2ib
lnetctl route add --net o2ib1 --gateway <rtrX-nidB>@o2ib

Servers
lnetctl net add --net o2ib1 --if ib0,ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidA>@o2ib1
lnetctl route add --net o2ib0 --gateway <rtrX-nidB>@o2ib1
There are a few things to note in the above configuration:
	The clients and the servers are now configured with two
 routes, each route's gateway is one of the interfaces of the
 route. The clients and servers will view each interface of the
 same router as a separate gateway and will monitor them as
 described above.

	The clients and the servers are not configured to view the
 routers as MR capable. This is important because we want to deal
 with each interface as a separate peers and not different
 interfaces of the same peer.

	The routers are configured to view the peers as MR capable.
 This is an oddity in the configuration, but is currently required
 in order to allow the routers to load balance the traffic load
 across its interfaces evenly.

16.3.3. Mixed Multi-Rail/Non-Multi-Rail Cluster

The above principles can be applied to mixed MR/Non-MR cluster.
 For example, the same configuration shown above can be applied if the
 clients and the servers are non-MR while the routers are MR capable.
 This appears to be a common cluster upgrade scenario.

16.4. LNet Health

LNet Multi-Rail has implemented the ability for multiple interfaces
 to be used on the same LNet network or across multiple LNet networks. The
 LNet Health feature adds the ability to maintain a health value for each
 local and remote interface. This allows the Multi-Rail algorithm to
 consider the health of the interface before selecting it for sending.
 The feature also adds the ability to resend messages across different
 interfaces when interface or network failures are detected. This allows
 LNet to mitigate communication failures before passing the failures to
 upper layers for further error handling. To accomplish this, LNet Health
 monitors the status of the send and receive operations and uses this
 status to increment the interface's health value in case of success and
 decrement it in case of failure.
16.4.1. Health Value

The initial health value of a local or remote interface is set to
 LNET_MAX_HEALTH_VALUE, currently set to be
 1000. The value itself is arbitrary and is meant to
 allow for health granularity, as opposed to having a simple boolean state.
 The granularity allows the Multi-Rail algorithm to select the interface
 that has the highest likelihood of sending or receiving a message.

16.4.2. Failure Types and Behavior

LNet health behavior depends on the type of failure detected:
	
 Failure Type

 	
 Behavior

	
 localresend

 	
 A local failure has occurred, such as no route found or an
 address resolution error. These failures could be temporary,
 therefore LNet will attempt to resend the message. LNet will
 decrement the health value of the local interface and will
 select it less often if there are multiple available interfaces.

	
 localno-resend

 	
 A local non-recoverable error occurred in the system, such
 as out of memory error. In these cases LNet will not attempt to
 resend the message. LNet will decrement the health value of the
 local interface and will select it less often if there are
 multiple available interfaces.

	
 remoteno-resend

 	
 If LNet successfully sends a message, but the message does
 not complete or an expected reply is not received, then it is
 classified as a remote error. LNet will not attempt to resend the
 message to avoid duplicate messages on the remote end. LNet will
 decrement the health value of the remote interface and will
 select it less often if there are multiple available interfaces.

	
 remoteresend

 	
 There are a set of failures where we can be reasonably sure
 that the message was dropped before getting to the remote end. In
 this case, LNet will attempt to resend the message. LNet will
 decrement the health value of the remote interface and will
 select it less often if there are multiple available interfaces.

16.4.3. User Interface

LNet Health is turned off by default. There are multiple module
 parameters available to control the LNet Health feature.
All the module parameters are implemented in sysfs and are located
 in /sys/module/lnet/parameters/. They can be set directly by echoing a
 value into them as well as from lnetctl.
	
 Parameter

 	
 Description

	
 lnet_health_sensitivity

 	
 When LNet detects a failure on a particular interface it
 will decrement its Health Value by
 lnet_health_sensitivity. The greater the value,
 the longer it takes for that interface to become healthy again.
 The default value of lnet_health_sensitivity
 is set to 0, which means the health value will not be decremented.
 In essense, the health feature is turned off.

 The sensitivity value can be set greater than 0. A
 lnet_health_sensitivity of 100 would mean that
 10 consecutive message failures or a steady-state failure rate
 over 1% would degrade the interface Health Value until it is
 disabled, while a lower failure rate would steer traffic away from
 the interface but it would continue to be available. When a
 failure occurs on an interface then its Health Value is
 decremented and the interface is flagged for recovery.

 lnetctl set health_sensitivity: sensitivity to failure
 0 - turn off health evaluation
 >0 - sensitivity value not more than 1000

	
 lnet_recovery_interval

 	
 When LNet detects a failure on a local or remote interface
 it will place that interface on a recovery queue. There is a
 recovery queue for local interfaces and another for remote
 interfaces. The interfaces on the recovery queues will be LNet
 PINGed every lnet_recovery_interval. This value
 defaults to 1 second. On every successful PING
 the health value of the interface pinged will be incremented by
 1.

 Having this value configurable allows system administrators
 to control the amount of control traffic on the network.

 lnetctl set recovery_interval: interval to ping unhealthy interfaces
 >0 - timeout in seconds

	
 lnet_transaction_timeout

 	
 This timeout is somewhat of an overloaded value. It carries
 the following functionality:

 	A message is abandoned if it is not sent successfully
 when the lnet_transaction_timeout expires and the retry_count
 is not reached.

	A GET or a PUT which expects an ACK expires if a REPLY
 or an ACK respectively, is not received within the
 lnet_transaction_timeout.

 This value defaults to 30 seconds.

 lnetctl set transaction_timeout: Message/Response timeout
 >0 - timeout in seconds

 Note
The LND timeout will now be a fraction of the
 lnet_transaction_timeout as described in the
 next section.
This means that in networks where very large delays are
 expected then it will be necessary to increase this value
 accordingly.

	
 lnet_retry_count

 	
 When LNet detects a failure which it deems appropriate for
 re-sending a message it will check if a message has passed the
 maximum retry_count specified. After which if a message wasn't
 sent successfully a failure event will be passed up to the layer
 which initiated message sending.

 Since the message retry interval
 (lnet_lnd_timeout) is computed from
 lnet_transaction_timeout / lnet_retry_count,
 the lnet_retry_count should be kept low enough
 that the retry interval is not shorter than the round-trip message
 delay in the network. A lnet_retry_count of 5
 is reasonable for the default
 lnet_transaction_timeout of 50 seconds.

 lnetctl set retry_count: number of retries
 0 - turn off retries
 >0 - number of retries, cannot be more than lnet_transaction_timeout

	
 lnet_lnd_timeout

 	
 This is not a configurable parameter. But it is derived from
 two configurable parameters:
 lnet_transaction_timeout and
 retry_count.

 lnet_lnd_timeout = lnet_transaction_timeout / retry_count

 As such there is a restriction that
 lnet_transaction_timeout >= retry_count

 The core assumption here is that in a healthy network,
 sending and receiving LNet messages should not have large delays.
 There could be large delays with RPC messages and their responses,
 but that's handled at the PtlRPC layer.

16.4.4. Displaying Information

16.4.4.1. Showing LNet Health Configuration Settings

lnetctl can be used to show all the LNet health
 configuration settings using the lnetctl global show
 command.
#> lnetctl global show
 global:
 numa_range: 0
 max_intf: 200
 discovery: 1
 retry_count: 3
 transaction_timeout: 10
 health_sensitivity: 100
 recovery_interval: 1

16.4.4.2. Showing LNet Health Statistics

LNet Health statistics are shown under a higher verbosity
 settings. To show the local interface health statistics:
lnetctl net show -v 3
To show the remote interface health statistics:
lnetctl peer show -v 3
Sample output:
#> lnetctl net show -v 3
 net:
 - net type: tcp
 local NI(s):
 - nid: 192.168.122.108@tcp
 status: up
 interfaces:
 0: eth2
 statistics:
 send_count: 304
 recv_count: 284
 drop_count: 0
 sent_stats:
 put: 176
 get: 138
 reply: 0
 ack: 0
 hello: 0
 received_stats:
 put: 145
 get: 137
 reply: 0
 ack: 2
 hello: 0
 dropped_stats:
 put: 10
 get: 0
 reply: 0
 ack: 0
 hello: 0
 health stats:
 health value: 1000
 interrupts: 0
 dropped: 10
 aborted: 0
 no route: 0
 timeouts: 0
 error: 0
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
 dev cpt: -1
 tcp bonding: 0
 CPT: "[0]"
 CPT: "[0]"
There is a new YAML block, health stats, which
 displays the health statistics for each local or remote network
 interface.
Global statistics also dump the global health statistics as shown
 below:
#> lnetctl stats show
 statistics:
 msgs_alloc: 0
 msgs_max: 33
 rst_alloc: 0
 errors: 0
 send_count: 901
 resend_count: 4
 response_timeout_count: 0
 local_interrupt_count: 0
 local_dropped_count: 10
 local_aborted_count: 0
 local_no_route_count: 0
 local_timeout_count: 0
 local_error_count: 0
 remote_dropped_count: 0
 remote_error_count: 0
 remote_timeout_count: 0
 network_timeout_count: 0
 recv_count: 851
 route_count: 0
 drop_count: 10
 send_length: 425791628
 recv_length: 69852
 route_length: 0
 drop_length: 0

16.4.5. Initial Settings Recommendations

LNet Health is off by default. This means that
 lnet_health_sensitivity and
 lnet_retry_count are set to 0.

Setting lnet_health_sensitivity to
 0 will not decrement the health of the interface on
 failure and will not change the interface selection behavior. Furthermore,
 the failed interfaces will not be placed on the recovery queues. In
 essence, turning off the LNet Health feature.
The LNet Health settings will need to be tuned for each cluster.
 However, the base configuration would be as follows:
#> lnetctl global show
 global:
 numa_range: 0
 max_intf: 200
 discovery: 1
 retry_count: 3
 transaction_timeout: 10
 health_sensitivity: 100
 recovery_interval: 1
This setting will allow a maximum of two retries for failed messages
 within the 5 second transaction timeout.
If there is a failure on the interface the health value will be
 decremented by 1 and the interface will be LNet PINGed every 1 second.

Chapter 17. Upgrading a Lustre File System

This chapter describes interoperability between Lustre software
 releases. It also provides procedures for upgrading from Lustre software
 release 1.8 to Lustre software release 2.x , from a Lustre software release
 2.x to a more recent Lustre software release 2.x (major release upgrade), and
 from a a Lustre software release 2.x.y to a more recent Lustre software
 release 2.x.y (minor release upgrade). It includes the following
 sections:
	
 Section 17.1, “

 Release Interoperability and Upgrade Requirements”

	
 Section 17.2, “

 Upgrading to Lustre Software Release 2.x (Major
 Release)”

	
 Section 17.3, “
 Upgrading to Lustre Software Release 2.x.y (Minor
 Release)”

17.1.

 Release Interoperability and Upgrade Requirements

 Lustre software release 2.x (major)
 upgrade:

	All servers must be upgraded at the same time, while some or
 all clients may be upgraded independently of the servers.

	All servers must be be upgraded to a Linux kernel supported by
 the Lustre software. See the Lustre Release Notes for your Lustre
	 version for a list of tested Linux distributions.

	Clients to be upgraded must be running a compatible Linux
 distribution as described in the Release Notes.

 Lustre software release 2.x.y release (minor)
 upgrade:

	All servers must be upgraded at the same time, while some or all
 clients may be upgraded.

	Rolling upgrades are supported for minor releases allowing
 individual servers and clients to be upgraded without stopping the
 Lustre file system.

17.2.

 Upgrading to Lustre Software Release 2.x (Major
 Release)

The procedure for upgrading from a Lustre software release 2.x to a
 more recent 2.x release of the Lustre software is described in this
 section.
Note
This procedure can also be used to upgrade Lustre software release
 1.8.6-wc1 or later to any Lustre software release 2.x. To upgrade other
 versions of Lustre software release 1.8.x, contact your support
 provider.

Note
In Lustre software release 2.2, a feature has been added for
 ldiskfs-based MDTs that allows striping a single file across up to 2000
 OSTs. By default, this "wide striping" feature is disabled. It is
 activated by setting the ea_inode option on the MDT
 using either mkfs.lustre or tune2fs.
 For example after upgrading an existing file system to Lustre software
 release 2.2 or later, wide striping can be enabled by running the
 following command on the MDT device before mounting it:

tune2fs -O large_xattr

 Once the wide striping feature is enabled and in use on the MDT, it is
 not possible to directly downgrade the MDT file system to an earlier
 version of the Lustre software that does not support wide striping. To
 disable wide striping:

	Delete all wide-striped files, OR
 use lfs_migrate -c 160 (or fewer stripes)
 to migrate the files to use fewer OSTs. This does not affect the
 total number of OSTs that the whole filesystem can access.

	Unmount the MDT.

	Run the following command to turn off the
 large_xattr option:

tune2fs -O ^large_xattr

Using either
 mkfs.lustre or
 tune2fs with
 large_xattr or
 ea_inode option reseults in
 ea_inode in the file system feature list.

Note
To generate a list of all files with more than 160 stripes use
 lfs find with the
 --stripe-count option:

lfs find ${mountpoint} --stripe-count=+160

Introduced in Lustre 2.4Note
In Lustre software release 2.4, a new feature allows using multiple
 MDTs, which can each serve one or more remote sub-directories in the file
 system. The
 root directory is always located on MDT0.
Note that clients running a release prior to the Lustre software
 release 2.4 can only see the namespace hosted by MDT0 and will return an
 IO error if an attempt is made to access a directory on another
 MDT.

To upgrade a Lustre software release 2.x to a more recent major
 release, complete these steps:
	Create a complete, restorable file system backup.
Caution
Before installing the Lustre software, back up ALL data. The
 Lustre software contains kernel modifications that interact with
 storage devices and may introduce security issues and data loss if
 not installed, configured, or administered properly. If a full backup
 of the file system is not practical, a device-level backup of the MDT
 file system is recommended. See
 Chapter 18, Backing Up and Restoring a File
 System for a procedure.

	Shut down the entire filesystem by following
 Section 13.4, “
 Stopping the Filesystem”

	Upgrade the Linux operating system on all servers to a compatible
 (tested) Linux distribution and reboot.

	Upgrade the Linux operating system on all clients to Red Hat
 Enterprise Linux 6 or other compatible (tested) distribution and
 reboot.

	Download the Lustre server RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.1, “Packages Installed on Lustre Servers” for a list of required packages.

	Install the Lustre server packages on all Lustre servers (MGS,
 MDSs, and OSSs).
	Log onto a Lustre server as the
 root user

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages are installed correctly:

rpm -qa|egrep "lustre|wc"

	Repeat these steps on each Lustre server.

	Download the Lustre client RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.2, “Packages Installed on Lustre Clients” for a list of required packages.
Note
The version of the kernel running on a Lustre client must be
 the same as the version of the
 lustre-client-modules-
 verpackage being installed. If not, a
 compatible kernel must be installed on the client before the Lustre
 client packages are installed.

	Install the Lustre client packages on each of the Lustre clients
 to be upgraded.
	Log onto a Lustre client as the
 root user.

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages were installed correctly:

rpm -qa|egrep "lustre|kernel"

	Repeat these steps on each Lustre client.

	(Optional) For upgrades to Lustre software release 2.2 or higher,
 to enable wide striping on an existing MDT, run the following command
 on the MDT:

tune2fs -O ea_inode /dev/mdtdev

For more information about wide striping, see
 Section 19.7, “Lustre Striping Internals”.

	(Optional) For upgrades to Lustre software release 2.4 or higher,
 to format an additional MDT, complete these steps:

	Determine the index used for the first MDT (each MDT must
 have unique index). Enter:

client$ lctl dl | grep mdc
36 UP mdc lustre-MDT0000-mdc-ffff88004edf3c00
 4c8be054-144f-9359-b063-8477566eb84e 5
In this example, the next available index is 1.

	Add the new block device as a new MDT at the next available
 index by entering (on one line):

mds# mkfs.lustre --reformat --fsname=filesystem_name --mdt \
 --mgsnode=mgsnode --index 1
/dev/mdt1_device

	(Optional) If you are upgrading to Lustre software release 2.3 or
 higher from Lustre software release 2.2 or earlier and want to enable
 the quota feature, complete these steps:

	Before setting up the file system, enter on both the MDS and
 OSTs:

tunefs.lustre --quota

	(Optional) If you are upgrading before Lustre software release
 2.10, to enable the project quota feature enter the following on every
 ldiskfs backend target:

tune2fs –O project /dev/dev

Note
Enabling the project feature will prevent
 the filesystem from being used by older versions of ldiskfs, so it
 should only be enabled if the project quota feature is required and/or
 after it is known that the upgraded release does not need to be
 downgraded.

	When setting up the file system, enter:

conf_param $FSNAME.quota.mdt=$QUOTA_TYPE
conf_param $FSNAME.quota.ost=$QUOTA_TYPE

	(Optional) If you are upgrading from Lustre software release 1.8,
 you must manually enable the FID-in-dirent feature. On the MDS, enter:

tune2fs –O dirdata /dev/mdtdev
Warning
This step is not reversible. Do not complete this step until
 you are sure you will not be downgrading the Lustre software.

Introduced in Lustre 2.4This step only enables FID-in-dirent for newly
	created files. If you are upgrading to Lustre software release 2.4,
	you can use namespace LFSCK to enable FID-in-dirent for the existing
	files. For the case of upgrading from Lustre software release 1.8, it is
 important to note that if you do NOT enable dirdata via
 the tune2fs command above, the namespace LFSCK will NOT
	generate FID-in-dirent for the existing files. For more information about
	FID-in-dirent and related functionalities in LFSCK, see
 Section 1.3, “

 Lustre File System Storage and I/O”.

	Start the Lustre file system by starting the components in the
 order shown in the following steps:
	Mount the MGT. On the MGS, run

mgs# mount -a -t lustre

	Mount the MDT(s). On each MDT, run:

mds# mount -a -t lustre

	Mount all the OSTs. On each OSS node, run:
oss# mount -a -t lustre
Note
This command assumes that all the OSTs are listed in the
 /etc/fstab file. OSTs that are not listed in
 the
 /etc/fstab file, must be mounted individually
 by running the mount command:
mount -t lustre /dev/block_device/mount_point

	Mount the file system on the clients. On each client node,
 run:
client# mount -a -t lustre

Note
The mounting order described in the steps above must be followed
 for the initial mount and registration of a Lustre file system after an
 upgrade. For a normal start of a Lustre file system, the mounting order
 is MGT, OSTs, MDT(s), clients.

If you have a problem upgrading a Lustre file system, see
 Section 34.2, “Reporting a Lustre File System Bug”for ways to get help.

17.3.
 Upgrading to Lustre Software Release 2.x.y (Minor
 Release)

Rolling upgrades are supported for upgrading from any Lustre software
 release 2.x.y to a more recent Lustre software release 2.X.y. This allows
 the Lustre file system to continue to run while individual servers (or
 their failover partners) and clients are upgraded one at a time. The
 procedure for upgrading a Lustre software release 2.x.y to a more recent
 minor release is described in this section.
To upgrade Lustre software release 2.x.y to a more recent minor
 release, complete these steps:
	Create a complete, restorable file system backup.
Caution
Before installing the Lustre software, back up ALL data. The
 Lustre software contains kernel modifications that interact with
 storage devices and may introduce security issues and data loss if
 not installed, configured, or administered properly. If a full backup
 of the file system is not practical, a device-level backup of the MDT
 file system is recommended. See
 Chapter 18, Backing Up and Restoring a File
 System for a procedure.

	Download the Lustre server RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.1, “Packages Installed on Lustre Servers” for a list of required packages.

	For a rolling upgrade, complete any procedures required to keep
 the Lustre file system running while the server to be upgraded is
 offline, such as failing over a primary server to its secondary
 partner.

	Unmount the Lustre server to be upgraded (MGS, MDS, or
 OSS)

	Install the Lustre server packages on the Lustre server.
	Log onto the Lustre server as the
 root user

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages are installed correctly:

rpm -qa|egrep "lustre|wc"

	Mount the Lustre server to restart the Lustre software on the
 server:

server# mount -a -t lustre

	Repeat these steps on each Lustre server.

	Download the Lustre client RPMs for your platform from the

 Lustre Releases repository. See
 Table 8.2, “Packages Installed on Lustre Clients” for a list of required packages.

	Install the Lustre client packages on each of the Lustre clients
 to be upgraded.
	Log onto a Lustre client as the
 root user.

	Use the
 yum command to install the packages:

yum --nogpgcheck install pkg1.rpm pkg2.rpm ...

	Verify the packages were installed correctly:

rpm -qa|egrep "lustre|kernel"

	Mount the Lustre client to restart the Lustre software on the
 client:

client# mount -a -t lustre

	Repeat these steps on each Lustre client.

If you have a problem upgrading a Lustre file system, see
 Section 34.2, “Reporting a Lustre File System Bug”for some suggestions for
 how to get help.

Chapter 18. Backing Up and Restoring a File
 System

This chapter describes how to backup and restore at the file
 system-level, device-level and file-level in a Lustre file system. Each
 backup approach is described in the the following sections:
	
 Section 18.1, “

 Backing up a File System”

	
 Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”

	
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)”

	
 Section 18.4, “
 Restoring a File-Level Backup”

	
 Section 18.5, “
 Using LVM Snapshots with the Lustre File System”

It is strongly recommended that sites perform
 periodic device-level backup of the MDT(s)
 (Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”),
 for example twice a week with alternate backups going to a separate
 device, even if there is not enough capacity to do a full backup of all
 of the filesystem data. Even if there are separate file-level backups of
 some or all files in the filesystem, having a device-level backup of the
 MDT can be very useful in case of MDT failure or corruption. Being able to
 restore a device-level MDT backup can avoid the significantly longer process
 of restoring the entire filesystem from backup. Since the MDT is required
 for access to all files, its loss would otherwise force full restore of the
 filesystem (if that is even possible) even if the OSTs are still OK.
Performing a periodic device-level MDT backup can be done relatively
 inexpensively because the storage need only be connected to the primary
 MDS (it can be manually connected to the backup MDS in the rare case
 it is needed), and only needs good linear read/write performance. While
 the device-level MDT backup is not useful for restoring individual files,
 it is most efficient to handle the case of MDT failure or corruption.
18.1.

 Backing up a File System

Backing up a complete file system gives you full control over the
 files to back up, and allows restoration of individual files as needed.
 File system-level backups are also the easiest to integrate into existing
 backup solutions.
File system backups are performed from a Lustre client (or many
 clients working parallel in different directories) rather than on
 individual server nodes; this is no different than backing up any other
 file system.
However, due to the large size of most Lustre file systems, it is
 not always possible to get a complete backup. We recommend that you back
 up subsets of a file system. This includes subdirectories of the entire
 file system, filesets for a single user, files incremented by date, and
 so on, so that restores can be done more efficiently.
Note
Lustre internally uses a 128-bit file identifier (FID) for all
 files. To interface with user applications, the 64-bit inode numbers
 are returned by the stat(),
 fstat(), and
 readdir() system calls on 64-bit applications, and
 32-bit inode numbers to 32-bit applications.
Some 32-bit applications accessing Lustre file systems (on both
 32-bit and 64-bit CPUs) may experience problems with the
 stat(),
 fstat() or
 readdir() system calls under certain circumstances,
 though the Lustre client should return 32-bit inode numbers to these
 applications.
In particular, if the Lustre file system is exported from a 64-bit
 client via NFS to a 32-bit client, the Linux NFS server will export
 64-bit inode numbers to applications running on the NFS client. If the
 32-bit applications are not compiled with Large File Support (LFS), then
 they return
 EOVERFLOW errors when accessing the Lustre files. To
 avoid this problem, Linux NFS clients can use the kernel command-line
 option "nfs.enable_ino64=0" in order to force the
 NFS client to export 32-bit inode numbers to the client.

 Workaround: We very strongly recommend
 that backups using
 tar(1) and other utilities that depend on the inode
 number to uniquely identify an inode to be run on 64-bit clients. The
 128-bit Lustre file identifiers cannot be uniquely mapped to a 32-bit
 inode number, and as a result these utilities may operate incorrectly on
 32-bit clients. While there is still a small chance of inode number
 collisions with 64-bit inodes, the FID allocation pattern is designed
 to avoid collisions for long periods of usage.

18.1.1.
 Lustre_rsync

The
 lustre_rsync feature keeps the entire file system in
 sync on a backup by replicating the file system's changes to a second
 file system (the second file system need not be a Lustre file system, but
 it must be sufficiently large).
 lustre_rsync uses Lustre changelogs to efficiently
 synchronize the file systems without having to scan (directory walk) the
 Lustre file system. This efficiency is critically important for large
 file systems, and distinguishes the Lustre
 lustre_rsync feature from other replication/backup
 solutions.
18.1.1.1.
 Using Lustre_rsync

The
 lustre_rsync feature works by periodically running
 lustre_rsync, a userspace program used to
 synchronize changes in the Lustre file system onto the target file
 system. The
 lustre_rsync utility keeps a status file, which
 enables it to be safely interrupted and restarted without losing
 synchronization between the file systems.
The first time that
 lustre_rsync is run, the user must specify a set of
 parameters for the program to use. These parameters are described in
 the following table and in
 Section 43.13, “
lustre_rsync”. On subsequent runs, these
 parameters are stored in the the status file, and only the name of the
 status file needs to be passed to
 lustre_rsync.
Before using
 lustre_rsync:
	Register the changelog user. For details, see the
 Chapter 43, System Configuration Utilities(
 changelog_register) parameter in the
 Chapter 43, System Configuration Utilities(
 lctl).

- AND -
	Verify that the Lustre file system (source) and the replica
 file system (target) are identical
 before registering the changelog user. If the
 file systems are discrepant, use a utility, e.g. regular
 rsync(not
 lustre_rsync), to make them identical.

The
 lustre_rsync utility uses the following
 parameters:
	

 Parameter

 	

 Description

	

 --source=
 src

 	
 The path to the root of the Lustre file system (source)
 which will be synchronized. This is a mandatory option if a
 valid status log created during a previous synchronization
 operation (
 --statuslog) is not specified.

	

 --target=
 tgt

 	
 The path to the root where the source file system will
 be synchronized (target). This is a mandatory option if the
 status log created during a previous synchronization
 operation (
 --statuslog) is not specified. This option
 can be repeated if multiple synchronization targets are
 desired.

	

 --mdt=
 mdt

 	
 The metadata device to be synchronized. A changelog
 user must be registered for this device. This is a mandatory
 option if a valid status log created during a previous
 synchronization operation (
 --statuslog) is not specified.

	

 --user=
 userid

 	
 The changelog user ID for the specified MDT. To use
 lustre_rsync, the changelog user must be
 registered. For details, see the
 changelog_register parameter in
 Chapter 43, System Configuration Utilities(
 lctl). This is a mandatory option if a
 valid status log created during a previous synchronization
 operation (
 --statuslog) is not specified.

	

 --statuslog=
 log

 	
 A log file to which synchronization status is saved.
 When the
 lustre_rsync utility starts, if the status
 log from a previous synchronization operation is specified,
 then the state is read from the log and otherwise mandatory
 --source,
 --target and
 --mdt options can be skipped. Specifying
 the
 --source,
 --target and/or
 --mdt options, in addition to the
 --statuslog option, causes the specified
 parameters in the status log to be overridden. Command line
 options take precedence over options in the status
 log.

	
 --xattr
 yes|no
 	
 Specifies whether extended attributes (
 xattrs) are synchronized or not. The
 default is to synchronize extended attributes.

Note
Disabling xattrs causes Lustre striping information
 not to be synchronized.

	

 --verbose

 	
 Produces verbose output.

	

 --dry-run

 	
 Shows the output of
 lustre_rsync commands (
 copy,
 mkdir, etc.) on the target file system
 without actually executing them.

	

 --abort-on-err

 	
 Stops processing the
 lustre_rsync operation if an error occurs.
 The default is to continue the operation.

18.1.1.2.

 lustre_rsync Examples

Sample
 lustre_rsync commands are listed below.
Register a changelog user for an MDT (e.g.
 testfs-MDT0000).
lctl --device testfs-MDT0000 changelog_register testfs-MDT0000
Registered changelog userid 'cl1'
Synchronize a Lustre file system (
 /mnt/lustre) to a target file system (
 /mnt/target).
$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \
 --mdt=testfs-MDT0000 --user=cl1 --statuslog sync.log --verbose
Lustre filesystem: testfs
MDT device: testfs-MDT0000
Source: /mnt/lustre
Target: /mnt/target
Statuslog: sync.log
Changelog registration: cl1
Starting changelog record: 0
Errors: 0
lustre_rsync took 1 seconds
Changelog records consumed: 22
After the file system undergoes changes, synchronize the changes
 onto the target file system. Only the
 statuslog name needs to be specified, as it has all
 the parameters passed earlier.
$ lustre_rsync --statuslog sync.log --verbose
Replicating Lustre filesystem: testfs
MDT device: testfs-MDT0000
Source: /mnt/lustre
Target: /mnt/target
Statuslog: sync.log
Changelog registration: cl1
Starting changelog record: 22
Errors: 0
lustre_rsync took 2 seconds
Changelog records consumed: 42
To synchronize a Lustre file system (
 /mnt/lustre) to two target file systems (
 /mnt/target1 and
 /mnt/target2).
$ lustre_rsync --source=/mnt/lustre --target=/mnt/target1 \
 --target=/mnt/target2 --mdt=testfs-MDT0000 --user=cl1 \
 --statuslog sync.log

Introduced in Lustre 2.11

18.2.
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)

In some cases, it is useful to do a full device-level backup of an
 individual device (MDT or OST), before replacing hardware, performing
 maintenance, etc. Doing full device-level backups ensures that all of the
 data and configuration files is preserved in the original state and is the
 easiest method of doing a backup. For the MDT file system, it may also be
 the fastest way to perform the backup and restore, since it can do large
 streaming read and write operations at the maximum bandwidth of the
 underlying devices.
Note
Keeping an updated full backup of the MDT is especially important
 because permanent failure or corruption of the MDT file system renders
 the much larger amount of data in all the OSTs largely inaccessible and
 unusable. The storage needed for one or two full MDT device backups
 is much smaller than doing a full filesystem backup, and can use less
 expensive storage than the actual MDT device(s) since it only needs to
 have good streaming read/write speed instead of high random IOPS.

Introduced in Lustre 2.3Warning
In Lustre software release 2.0 through 2.2, the only successful
 way to backup and restore an MDT is to do a device-level backup as is
 described in this section. File-level restore of an MDT is not possible
 before Lustre software release 2.3, as the Object Index (OI) file cannot
 be rebuilt after restore without the OI Scrub functionality.
 Since Lustre 2.3, Object Index files are automatically rebuilt at first
 mount after a restore is detected (see
 LU-957),
 and file-level backup is supported (see
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)”).

If hardware replacement is the reason for the backup or if a spare
 storage device is available, it is possible to do a raw copy of the MDT or
 OST from one block device to the other, as long as the new device is at
 least as large as the original device. To do this, run:
dd if=/dev/{original} of=/dev/{newdev} bs=4M
If hardware errors cause read problems on the original device, use
 the command below to allow as much data as possible to be read from the
 original device while skipping sections of the disk with errors:
dd if=/dev/{original} of=/dev/{newdev} bs=4k conv=sync,noerror /
 count={original size in 4kB blocks}
Even in the face of hardware errors, the ldiskfs
 file system is very robust and it may be possible
 to recover the file system data after running
 e2fsck -fy /dev/{newdev} on the new device, along with
 ll_recover_lost_found_objs for OST devices.
Introduced in Lustre 2.6With Lustre software version 2.6 and later, there is
 no longer a need to run
 ll_recover_lost_found_objs on the OSTs, since the
 LFSCK scanning will automatically move objects from
 lost+found back into its correct location on the OST
 after directory corruption.

In order to ensure that the backup is fully consistent, the MDT or
 OST must be unmounted, so that there are no changes being made to the
 device while the data is being transferred. If the reason for the
 backup is preventative (i.e. MDT backup on a running MDS in case of
 future failures) then it is possible to perform a consistent backup from
 an LVM snapshot. If an LVM snapshot is not available, and taking the
 MDS offline for a backup is unacceptable, it is also possible to perform
 a backup from the raw MDT block device. While the backup from the raw
 device will not be fully consistent due to ongoing changes, the vast
 majority of ldiskfs metadata is statically allocated, and inconsistencies
 in the backup can be fixed by running e2fsck on the
 backup device, and is still much better than not having any backup at all.

18.3.

 Backing Up an OST or MDT (Backend File System Level)

This procedure provides an alternative to backup or migrate the data
 of an OST or MDT at the file level. At the file-level, unused space is
 omitted from the backup and the process may be completed quicker with a
 smaller total backup size. Backing up a single OST device is not
 necessarily the best way to perform backups of the Lustre file system,
 since the files stored in the backup are not usable without metadata stored
 on the MDT and additional file stripes that may be on other OSTs. However,
 it is the preferred method for migration of OST devices, especially when it
 is desirable to reformat the underlying file system with different
 configuration options or to reduce fragmentation.
Note

 Prior to Lustre software release 2.3, the
 only successful way to perform an MDT backup and restore was to do a
 device-level backup as described in
 Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”. The ability to do MDT
 file-level backups is not available for Lustre software release 2.0
 through 2.2, because restoration of the Object Index (OI) file does not
 return the MDT to a functioning state.
Since Lustre software release 2.3,
 Object Index files are automatically rebuilt at first mount after a
 restore is detected (see
 LU-957),
 so file-level MDT restore is supported.

Introduced in Lustre 2.1118.3.1.
 Backing Up an OST or MDT (Backend File System Level)

Prior to Lustre software release 2.11.0, we can only do the backend
 file system level backup and restore process for ldiskfs-based systems.
 The ability to perform a zfs-based MDT/OST file system level backup and
 restore is introduced beginning in Lustre software release 2.11.0.
 Differing from an ldiskfs-based system, index objects must be backed up
 before the unmount of the target (MDT or OST) in order to be able to
 restore the file system successfully. To enable index backup on the
 target, execute the following command on the target server:
lctl set_param osd-zfs.${fsname}-${target}.index_backup=1
${target} is composed of the target type
 (MDT or OST) plus the target index, such as MDT0000,
 OST0001, and so on.
Note
The index_backup is also valid for an ldiskfs-based system,
 that will be used when migrating data between ldiskfs-based and
 zfs-based systems as described in Section 18.6, “
 Migration Between ZFS and ldiskfs Target Filesystems
 ”.

18.3.2.
 Backing Up an OST or MDT

For Lustre software release 2.3 and newer with MDT file-level backup
 support, substitute mdt for ost
 in the instructions below.
	Umount the target

	Make a mountpoint for the file system.

[oss]# mkdir -p /mnt/ost

	Mount the file system.
For ldiskfs-based systems:
[oss]# mount -t ldiskfs /dev/{ostdev} /mnt/ost
For zfs-based systems:
	Import the pool for the target if it is exported. For example:

[oss]# zpool import lustre-ost [-d ${ostdev_dir}]

	Enable the canmount property on the target
 filesystem. For example:

[oss]# zfs set canmount=on ${fsname}-ost/ost

 You also can specify the mountpoint property. By default, it will
 be: /${fsname}-ost/ost

	Mount the target as 'zfs'. For example:

[oss]# zfs mount ${fsname}-ost/ost

	
 Change to the mountpoint being backed
 up.

[oss]# cd /mnt/ost

	
 Back up the extended attributes.

[oss]# getfattr -R -d -m '.*' -e hex -P . > ea-$(date +%Y%m%d).bak
Note
If the tar(1) command supports the
 --xattr option (see below), the
 getfattr step may be unnecessary as long as tar
 correctly backs up the trusted.* attributes.
	 However, completing this step is not harmful and can serve as an
	 added safety measure.

Note
In most distributions, the
 getfattr command is part of the
 attr package. If the
 getfattr command returns errors like
 Operation not supported, then the kernel does not
 correctly support EAs. Stop and use a different backup method.

	
 Verify that the
 ea-$date.bak file has properly backed up the EA
 data on the OST.

Without this attribute data, the MDT restore process will fail
 and result in an unusable filesystem. The OST restore process may be
 missing extra data that can be very useful in case of later file system
 corruption. Look at this file with more or a text
 editor. Each object file should have a corresponding item similar to
 this:
[oss]# file: O/0/d0/100992
trusted.fid= \
0x0d822200000000004a8a73e500000000808a0100000000000000000000000000

	
 Back up all file system data.

[oss]# tar czvf {backup file}.tgz [--xattrs] [--xattrs-include="trusted.*" --sparse .
Note
The tar
 --sparse option is vital for backing up an MDT.
 Very old versions of tar may not support the
 --sparse option correctly, which may cause the
 MDT backup to take a long time. Known-working versions include
 the tar from Red Hat Enterprise Linux distribution (RHEL version
	 6.3 or newer) or GNU tar version 1.25 and newer.

Warning
The tar --xattrs option is only available
 in GNU tar version 1.27 or later or in RHEL 6.3 or newer. The
 --xattrs-include="trusted.*" option is
 required for correct restoration of the xattrs
 when using GNU tar 1.27 or RHEL 7 and newer.

	
 Change directory out of the file
 system.

[oss]# cd -

	
 Unmount the file system.

[oss]# umount /mnt/ost
Note
When restoring an OST backup on a different node as part of an
 OST migration, you also have to change server NIDs and use the
 --writeconf command to re-generate the
 configuration logs. See
 Chapter 14, Lustre Maintenance(Changing a Server NID).

18.4.
 Restoring a File-Level Backup

To restore data from a file-level backup, you need to format the
 device, restore the file data and then restore the EA data.
	Format the new device.
[oss]# mkfs.lustre --ost --index {OST index}
--replace --fstype=${fstype} {other options} /dev/{newdev}

	Set the file system label (ldiskfs-based
 systems only).
[oss]# e2label {fsname}-OST{index in hex} /mnt/ost

	Mount the file system.
For ldiskfs-based systems:
[oss]# mount -t ldiskfs /dev/{newdev} /mnt/ost
For zfs-based systems:
	Import the pool for the target if it is exported. For example:

[oss]# zpool import lustre-ost [-d ${ostdev_dir}]

	Enable the canmount property on the target filesystem. For
 example:
[oss]# zfs set canmount=on ${fsname}-ost/ost
You also can specify the mountpoint
 property. By default, it will be:
 /${fsname}-ost/ost

	Mount the target as 'zfs'. For example:
[oss]# zfs mount ${fsname}-ost/ost

	Change to the new file system mount point.
[oss]# cd /mnt/ost

	Restore the file system backup.
[oss]# tar xzvpf {backup file} [--xattrs] [--xattrs-include="trusted.*"] --sparse
Warning
The tar --xattrs option is only available
	 in GNU tar version 1.27 or later or in RHEL 6.3 or newer. The
	 --xattrs-include="trusted.*" option is
	 required for correct restoration of the
	 MDT xattrs when using GNU tar 1.27 or RHEL 7 and newer. Otherwise,
	 the setfattr step below should be used.
	

	If not using a version of tar that supports direct xattr
	backups, restore the file system extended attributes.
[oss]# setfattr --restore=ea-${date}.bak
Note
If
 --xattrs option is supported by tar and specified
 in the step above, this step is redundant.

	Verify that the extended attributes were restored.
[oss]# getfattr -d -m ".*" -e hex O/0/d0/100992 trusted.fid= \
0x0d822200000000004a8a73e500000000808a0100000000000000000000000000

	Remove old OI and LFSCK files.
[oss]# rm -rf oi.16* lfsck_* LFSCK

	Remove old CATALOGS.
[oss]# rm -f CATALOGS
Note
This is optional for the MDT side only. The CATALOGS record the
	llog file handlers that are used for recovering cross-server updates.
	Before OI scrub rebuilds the OI mappings for the llog files, the
	related recovery will get a failure if it runs faster than the
	background OI scrub. This will result in a failure of the whole mount
	process. OI scrub is an online tool, therefore, a mount failure means
	that the OI scrub will be stopped. Removing the old CATALOGS will
	avoid this potential trouble. The side-effect of removing old
	CATALOGS is that the recovery for related cross-server updates will
	be aborted. However, this can be handled by LFSCK after the system
	mount is up.

	Change directory out of the file system.
[oss]# cd -

	Unmount the new file system.
[oss]# umount /mnt/ost
Note
If the restored system has a different NID from the backup
 system, please change the NID. For detail, please refer to
 Section 14.5, “
Changing a Server NID”. For example:
[oss]# mount -t lustre -o nosvc ${fsname}-ost/ost /mnt/ost
[oss]# lctl replace_nids ${fsname}-OSTxxxx $new_nids
[oss]# umount /mnt/ost

	Mount the target as lustre.
Usually, we will use the -o abort_recov option
 to skip unnecessary recovery. For example:
[oss]# mount -t lustre -o abort_recov #{fsname}-ost/ost /mnt/ost
Lustre can detect the restore automatically when mounting the
 target, and then trigger OI scrub to rebuild the OIs and index objects
 asynchronously in the background. You can check the OI scrub status
 with the following command:
[oss]# lctl get_param -n osd-${fstype}.${fsname}-${target}.oi_scrub

If the file system was used between the time the backup was made and
 when it was restored, then the online LFSCK tool will
 automatically be run to ensure the filesystem is coherent. If all of the
 device filesystems were backed up at the same time after Lustre was
 was stopped, this step is unnecessary. In either case, the filesystem
 will be immediately although there may be I/O errors reading
 from files that are present on the MDT but not the OSTs, and files that
 were created after the MDT backup will not be accessible or visible. See
 Section 35.4, “

 Checking the file system with LFSCK”for details on using LFSCK.

18.5.
 Using LVM Snapshots with the Lustre File System

If you want to perform disk-based backups (because, for example,
 access to the backup system needs to be as fast as to the primary Lustre
 file system), you can use the Linux LVM snapshot tool to maintain multiple,
 incremental file system backups.
Because LVM snapshots cost CPU cycles as new files are written,
 taking snapshots of the main Lustre file system will probably result in
 unacceptable performance losses. You should create a new, backup Lustre
 file system and periodically (e.g., nightly) back up new/changed files to
 it. Periodic snapshots can be taken of this backup file system to create a
 series of "full" backups.
Note
Creating an LVM snapshot is not as reliable as making a separate
 backup, because the LVM snapshot shares the same disks as the primary MDT
 device, and depends on the primary MDT device for much of its data. If
 the primary MDT device becomes corrupted, this may result in the snapshot
 being corrupted.

18.5.1.
 Creating an LVM-based Backup File System

Use this procedure to create a backup Lustre file system for use
 with the LVM snapshot mechanism.
	Create LVM volumes for the MDT and OSTs.
Create LVM devices for your MDT and OST targets. Make sure not
 to use the entire disk for the targets; save some room for the
 snapshots. The snapshots start out as 0 size, but grow as you make
 changes to the current file system. If you expect to change 20% of
 the file system between backups, the most recent snapshot will be 20%
 of the target size, the next older one will be 40%, etc. Here is an
 example:
cfs21:~# pvcreate /dev/sda1
 Physical volume "/dev/sda1" successfully created
cfs21:~# vgcreate vgmain /dev/sda1
 Volume group "vgmain" successfully created
cfs21:~# lvcreate -L200G -nMDT0 vgmain
 Logical volume "MDT0" created
cfs21:~# lvcreate -L200G -nOST0 vgmain
 Logical volume "OST0" created
cfs21:~# lvscan
 ACTIVE '/dev/vgmain/MDT0' [200.00 GB] inherit
 ACTIVE '/dev/vgmain/OST0' [200.00 GB] inherit

	Format the LVM volumes as Lustre targets.
In this example, the backup file system is called
 main and designates the current, most up-to-date
 backup.
cfs21:~# mkfs.lustre --fsname=main --mdt --index=0 /dev/vgmain/MDT0
 No management node specified, adding MGS to this MDT.
 Permanent disk data:
 Target: main-MDT0000
 Index: 0
 Lustre FS: main
 Mount type: ldiskfs
 Flags: 0x75
 (MDT MGS first_time update)
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
checking for existing Lustre data
 device size = 200GB
 formatting backing filesystem ldiskfs on /dev/vgmain/MDT0
 target name main-MDT0000
 4k blocks 0
 options -i 4096 -I 512 -q -O dir_index -F
 mkfs_cmd = mkfs.ext2 -j -b 4096 -L main-MDT0000 -i 4096 -I 512 -q
 -O dir_index -F /dev/vgmain/MDT0
 Writing CONFIGS/mountdata
cfs21:~# mkfs.lustre --mgsnode=cfs21 --fsname=main --ost --index=0
/dev/vgmain/OST0
 Permanent disk data:
 Target: main-OST0000
 Index: 0
 Lustre FS: main
 Mount type: ldiskfs
 Flags: 0x72
 (OST first_time update)
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
checking for existing Lustre data
 device size = 200GB
 formatting backing filesystem ldiskfs on /dev/vgmain/OST0
 target name main-OST0000
 4k blocks 0
 options -I 256 -q -O dir_index -F
 mkfs_cmd = mkfs.ext2 -j -b 4096 -L lustre-OST0000 -J size=400 -I 256
 -i 262144 -O extents,uninit_bg,dir_nlink,huge_file,flex_bg -G 256
 -E resize=4290772992,lazy_journal_init, -F /dev/vgmain/OST0
 Writing CONFIGS/mountdata
cfs21:~# mount -t lustre /dev/vgmain/MDT0 /mnt/mdt
cfs21:~# mount -t lustre /dev/vgmain/OST0 /mnt/ost
cfs21:~# mount -t lustre cfs21:/main /mnt/main

18.5.2.
 Backing up New/Changed Files to the Backup File
 System

At periodic intervals e.g., nightly, back up new and changed files
 to the LVM-based backup file system.
cfs21:~# cp /etc/passwd /mnt/main

cfs21:~# cp /etc/fstab /mnt/main

cfs21:~# ls /mnt/main
fstab passwd

18.5.3.
 Creating Snapshot Volumes

Whenever you want to make a "checkpoint" of the main Lustre file
 system, create LVM snapshots of all target MDT and OSTs in the LVM-based
 backup file system. You must decide the maximum size of a snapshot ahead
 of time, although you can dynamically change this later. The size of a
 daily snapshot is dependent on the amount of data changed daily in the
 main Lustre file system. It is likely that a two-day old snapshot will be
 twice as big as a one-day old snapshot.
You can create as many snapshots as you have room for in the volume
 group. If necessary, you can dynamically add disks to the volume
 group.
The snapshots of the target MDT and OSTs should be taken at the
 same point in time. Make sure that the cronjob updating the backup file
 system is not running, since that is the only thing writing to the disks.
 Here is an example:
cfs21:~# modprobe dm-snapshot
cfs21:~# lvcreate -L50M -s -n MDT0.b1 /dev/vgmain/MDT0
 Rounding up size to full physical extent 52.00 MB
 Logical volume "MDT0.b1" created
cfs21:~# lvcreate -L50M -s -n OST0.b1 /dev/vgmain/OST0
 Rounding up size to full physical extent 52.00 MB
 Logical volume "OST0.b1" created

After the snapshots are taken, you can continue to back up
 new/changed files to "main". The snapshots will not contain the new
 files.
cfs21:~# cp /etc/termcap /mnt/main
cfs21:~# ls /mnt/main
fstab passwd termcap

18.5.4.
 Restoring the File System From a Snapshot

Use this procedure to restore the file system from an LVM
 snapshot.
	Rename the LVM snapshot.
Rename the file system snapshot from "main" to "back" so you
 can mount it without unmounting "main". This is recommended, but not
 required. Use the
 --reformat flag to
 tunefs.lustre to force the name change. For
 example:
cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf /dev/vgmain/MDT0.b1
 checking for existing Lustre data
 found Lustre data
 Reading CONFIGS/mountdata
Read previous values:
 Target: main-MDT0000
 Index: 0
 Lustre FS: main
 Mount type: ldiskfs
 Flags: 0x5
 (MDT MGS)
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
Permanent disk data:
 Target: back-MDT0000
 Index: 0
 Lustre FS: back
 Mount type: ldiskfs
 Flags: 0x105
 (MDT MGS writeconf)
 Persistent mount opts: errors=remount-ro,iopen_nopriv,user_xattr
 Parameters:
Writing CONFIGS/mountdata
cfs21:~# tunefs.lustre --reformat --fsname=back --writeconf /dev/vgmain/OST0.b1
 checking for existing Lustre data
 found Lustre data
 Reading CONFIGS/mountdata
Read previous values:
 Target: main-OST0000
 Index: 0
 Lustre FS: main
 Mount type: ldiskfs
 Flags: 0x2
 (OST)
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
Permanent disk data:
 Target: back-OST0000
 Index: 0
 Lustre FS: back
 Mount type: ldiskfs
 Flags: 0x102
 (OST writeconf)
 Persistent mount opts: errors=remount-ro,extents,mballoc
 Parameters: mgsnode=192.168.0.21@tcp
Writing CONFIGS/mountdata

When renaming a file system, we must also erase the last_rcvd
 file from the snapshots
cfs21:~# mount -t ldiskfs /dev/vgmain/MDT0.b1 /mnt/mdtback
cfs21:~# rm /mnt/mdtback/last_rcvd
cfs21:~# umount /mnt/mdtback
cfs21:~# mount -t ldiskfs /dev/vgmain/OST0.b1 /mnt/ostback
cfs21:~# rm /mnt/ostback/last_rcvd
cfs21:~# umount /mnt/ostback

	Mount the file system from the LVM snapshot. For
 example:
cfs21:~# mount -t lustre /dev/vgmain/MDT0.b1 /mnt/mdtback
cfs21:~# mount -t lustre /dev/vgmain/OST0.b1 /mnt/ostback
cfs21:~# mount -t lustre cfs21:/back /mnt/back

	Note the old directory contents, as of the snapshot time. For
 example:
cfs21:~/cfs/b1_5/lustre/utils# ls /mnt/back
fstab passwds

18.5.5.
 Deleting Old Snapshots

To reclaim disk space, you can erase old snapshots as your backup
 policy dictates. Run:
lvremove /dev/vgmain/MDT0.b1

18.5.6.
 Changing Snapshot Volume Size

You can also extend or shrink snapshot volumes if you find your
 daily deltas are smaller or larger than expected. Run:
lvextend -L10G /dev/vgmain/MDT0.b1
Note
Extending snapshots seems to be broken in older LVM. It is
 working in LVM v2.02.01.

18.6.
 Migration Between ZFS and ldiskfs Target Filesystems

Beginning with Lustre 2.11.0, it is possible to migrate between
 ZFS and ldiskfs backends. For migrating OSTs, it is best to use
 lfs find/lfs_migrate to empty out
 an OST while the filesystem is in use and then reformat it with the new
 fstype. For instructions on removing the OST, please see
 Section 14.9.3, “Removing an OST from the File System”.
18.6.1.
 Migrate from a ZFS to an ldiskfs based filesystem

The first step of the process is to make a ZFS backend backup
 using tar as described in
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)”.
Next, restore the backup to an ldiskfs-based system as described
 in Section 18.4, “
 Restoring a File-Level Backup”.

18.6.2.
 Migrate from an ldiskfs to a ZFS based filesystem

The first step of the process is to make an ldiskfs backend backup
 using tar as described in
 Section 18.3, “

 Backing Up an OST or MDT (Backend File System Level)”.
Caution:For a migration from
 ldiskfs to zfs, it is required to enable index_backup before the
 unmount of the target. This is an additional step for a regular
 ldiskfs-based backup/restore and easy to be missed.
Next, restore the backup to an ldiskfs-based system as described
 in Section 18.4, “
 Restoring a File-Level Backup”.

Chapter 19. Managing File Layout (Striping) and Free
 Space

This chapter describes file layout (striping) and I/O options, and includes the following
 sections:
	Section 19.1, “

 How Lustre File System Striping Works”

	Section 19.2, “
 Lustre File Layout (Striping) Considerations”

	Section 19.3, “Setting the File Layout/Striping Configuration (lfs
 setstripe)”

	Section 19.4, “Retrieving File Layout/Striping Information (getstripe)”

	Section 19.6, “Managing Free Space”

	Section 19.7, “Lustre Striping Internals”

19.1.

 How Lustre File System Striping Works

In a Lustre file system, the MDS allocates objects to OSTs using either a round-robin
 algorithm or a weighted algorithm. When the amount of free space is well balanced (i.e., by
 default, when the free space across OSTs differs by less than 17%), the round-robin algorithm
 is used to select the next OST to which a stripe is to be written. Periodically, the MDS
 adjusts the striping layout to eliminate some degenerated cases in which applications that
 create very regular file layouts (striping patterns) preferentially use a particular OST in
 the sequence.
 Normally the usage of OSTs is well balanced. However, if users create a small number of
 exceptionally large files or incorrectly specify striping parameters, imbalanced OST usage may
 result. When the free space across OSTs differs by more than a specific amount (17% by
 default), the MDS then uses weighted random allocations with a preference for allocating
 objects on OSTs with more free space. (This can reduce I/O performance until space usage is
 rebalanced again.) For a more detailed description of how striping is allocated, see Section 19.6, “Managing Free Space”.
Files can only be striped over a finite number of OSTs, based on the
 maximum size of the attributes that can be stored on the MDT. If the MDT
 is ldiskfs-based without the ea_inode feature, a file
 can be striped across at most 160 OSTs. With a ZFS-based MDT, or if the
 ea_inode feature is enabled for an ldiskfs-based MDT,
 a file can be striped across up to 2000 OSTs. For more information, see
 Section 19.7, “Lustre Striping Internals”.

Introduced in Lustre 2.10

19.2.
 Lustre File Layout (Striping) Considerations

Whether you should set up file striping and what parameter values you select depends on
 your needs. A good rule of thumb is to stripe over as few objects as will meet those needs and
 no more.
Some reasons for using striping include:
	Providing high-bandwidth access. Many applications
 require high-bandwidth access to a single file, which may be more bandwidth than can be
 provided by a single OSS. Examples are a scientific application that writes to a single
 file from hundreds of nodes, or a binary executable that is loaded by many nodes when an
 application starts.
In cases like these, a file can be striped over as many OSSs as it takes to achieve
 the required peak aggregate bandwidth for that file. Striping across a larger number of
 OSSs should only be used when the file size is very large and/or is accessed by many nodes
 at a time. Currently, Lustre files can be striped across up to 2000 OSTs, the maximum
 stripe count for an ldiskfs file system.

	Improving performance when OSS bandwidth is exceeded.
 Striping across many OSSs can improve performance if the aggregate client bandwidth
 exceeds the server bandwidth and the application reads and writes data fast enough to take
 advantage of the additional OSS bandwidth. The largest useful stripe count is bounded by
 the I/O rate of the clients/jobs divided by the performance per OSS.

	Providing space for very large files. Striping is
 useful when a single OST does not have enough free space to hold the entire file.

Some reasons to minimize or avoid striping:
	Increased overhead. Striping results in more locks
 and extra network operations during common operations such as stat and
 unlink. Even when these operations are performed in parallel, one
 network operation takes less time than 100 operations.
Increased overhead also results from server contention. Consider a cluster with 100
 clients and 100 OSSs, each with one OST. If each file has exactly one object and the load
 is distributed evenly, there is no contention and the disks on each server can manage
 sequential I/O. If each file has 100 objects, then the clients all compete with one
 another for the attention of the servers, and the disks on each node seek in 100 different
 directions resulting in needless contention.

	Increased risk. When files are striped across all
 servers and one of the servers breaks down, a small part of each striped file is lost. By
 comparison, if each file has exactly one stripe, fewer files are lost, but they are lost
 in their entirety. Many users would prefer to lose some of their files entirely than all
 of their files partially.

19.2.1.
 Choosing a Stripe Size

Choosing a stripe size is a balancing act, but reasonable defaults are described below.
 The stripe size has no effect on a single-stripe file.
	The stripe size must be a multiple of the page
 size. Lustre software tools enforce a multiple of 64 KB (the maximum page
 size on ia64 and PPC64 nodes) so that users on platforms with smaller pages do not
 accidentally create files that might cause problems for ia64 clients.

	The smallest recommended stripe size is 512 KB.
 Although you can create files with a stripe size of 64 KB, the smallest practical stripe
 size is 512 KB because the Lustre file system sends 1MB chunks over the network.
 Choosing a smaller stripe size may result in inefficient I/O to the disks and reduced
 performance.

	A good stripe size for sequential I/O using high-speed
 networks is between 1 MB and 4 MB. In most situations, stripe sizes larger
 than 4 MB may result in longer lock hold times and contention during shared file
 access.

	The maximum stripe size is 4 GB. Using a large
 stripe size can improve performance when accessing very large files. It allows each
 client to have exclusive access to its own part of a file. However, a large stripe size
 can be counterproductive in cases where it does not match your I/O pattern.

	Choose a stripe pattern that takes into account the write
 patterns of your application. Writes that cross an object boundary are
 slightly less efficient than writes that go entirely to one server. If the file is
 written in a consistent and aligned way, make the stripe size a multiple of the
 write() size.

19.3. Setting the File Layout/Striping Configuration (lfs
 setstripe)

Use the lfs setstripe command to create new files with a specific file layout (stripe pattern) configuration.
lfs setstripe [--size|-s stripe_size] [--count|-c stripe_count] \
[--index|-i start_ost] [--pool|-p pool_name] filename|dirname

 stripe_size

The stripe_size indicates how much data to write to one OST before
 moving to the next OST. The default stripe_size is 1 MB. Passing a
 stripe_size of 0 causes the default stripe size to be used. Otherwise,
 the stripe_size value must be a multiple of 64 KB.

 stripe_count

The stripe_count indicates how many OSTs to use. The default stripe_count value is 1. Setting stripe_count to 0 causes the default stripe count to be used. Setting stripe_count to -1 means stripe over all available OSTs (full OSTs are skipped).

 start_ost

The start OST is the first OST to which files are written. The default value for
 start_ost is -1, which allows the MDS to choose the starting index. This
 setting is strongly recommended, as it allows space and load balancing to be done by the MDS
 as needed. If the value of start_ost is set to a value other than -1, the
 file starts on the specified OST index. OST index numbering starts at 0.
Note
If the specified OST is inactive or in a degraded mode, the MDS will silently choose
 another target.

Note
If you pass a start_ost value of 0 and a
 stripe_count value of 1, all files are written to
 OST 0, until space is exhausted. This is probably not what you meant
 to do. If you only want to adjust the stripe count and keep the other
 parameters at their default settings, do not specify any of the other parameters:
client# lfs setstripe -c stripe_count filename

 pool_name

The pool_name specifies the OST pool to which the file will be written.
 This allows limiting the OSTs used to a subset of all OSTs in the file system. For more
 details about using OST pools, see Creating and Managing OST Pools.
19.3.1. Specifying a File Layout (Striping Pattern) for a Single File

It is possible to specify the file layout when a new file is created using the command lfs setstripe. This allows users to override the file system default parameters to tune the file layout more optimally for their application. Execution of an lfs setstripe command fails if the file already exists.
19.3.1.1. Setting the Stripe Size

The command to create a new file with a specified stripe size is similar to:
[client]# lfs setstripe -s 4M /mnt/lustre/new_file
This example command creates the new file /mnt/lustre/new_file with a stripe size of 4 MB.
Now, when the file is created, the new stripe setting creates the file on a single OST with a stripe size of 4M:
 [client]# lfs getstripe /mnt/lustre/new_file
/mnt/lustre/4mb_file
lmm_stripe_count: 1
lmm_stripe_size: 4194304
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 1
obdidx objid objid group
1 690550 0xa8976 0
In this example, the stripe size is 4 MB.

19.3.1.2.
 Setting the Stripe Count

The command below creates a new file with a stripe count of -1 to
 specify striping over all available OSTs:
[client]# lfs setstripe -c -1 /mnt/lustre/full_stripe
The example below indicates that the file full_stripe is striped
 over all six active OSTs in the configuration:
[client]# lfs getstripe /mnt/lustre/full_stripe
/mnt/lustre/full_stripe
 obdidx objid objid group
 0 8 0x8 0
 1 4 0x4 0
 2 5 0x5 0
 3 5 0x5 0
 4 4 0x4 0
 5 2 0x2 0
 This is in contrast to the output in Section 19.3.1.1, “Setting the Stripe Size”, which
 shows only a single object for the file.

19.3.2. Setting the Striping Layout for a Directory

In a directory, the lfs setstripe command sets a default striping
 configuration for files created in the directory. The usage is the same as lfs
 setstripe for a regular file, except that the directory must exist prior to
 setting the default striping configuration. If a file is created in a directory with a
 default stripe configuration (without otherwise specifying striping), the Lustre file system
 uses those striping parameters instead of the file system default for the new file.
To change the striping pattern for a sub-directory, create a directory with desired file
 layout as described above. Sub-directories inherit the file layout of the root/parent
 directory.

19.3.3. Setting the Striping Layout for a File System

Setting the striping specification on the root directory determines
 the striping for all new files created in the file system unless an overriding striping
 specification takes precedence (such as a striping layout specified by the application, or
 set using lfs setstripe, or specified for the parent directory).
Note
The striping settings for a root directory are, by default, applied
 to any new child directories created in the root directory, unless striping settings have
 been specified for the child directory.

19.3.4. Creating a File on a Specific OST

You can use lfs setstripe to create a file on a specific OST. In the
 following example, the file file1 is created on the first OST (OST index
 is 0).
$ lfs setstripe --count 1 --index 0 file1
$ dd if=/dev/zero of=file1 count=1 bs=100M
1+0 records in
1+0 records out

$ lfs getstripe file1
/mnt/testfs/file1
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 0
 obdidx objid objid group
 0 37364 0x91f4 0

19.4. Retrieving File Layout/Striping Information (getstripe)

The lfs getstripe command is used to display information that shows
 over which OSTs a file is distributed. For each OST, the index and UUID is displayed, along
 with the OST index and object ID for each stripe in the file. For directories, the default
 settings for files created in that directory are displayed.
19.4.1. Displaying the Current Stripe Size

To see the current stripe size for a Lustre file or directory, use the lfs
 getstripe command. For example, to view information for a directory, enter a
 command similar to:
[client]# lfs getstripe /mnt/lustre
This command produces output similar to:
/mnt/lustre
(Default) stripe_count: 1 stripe_size: 1M stripe_offset: -1
In this example, the default stripe count is 1 (data blocks are
 striped over a single OST), the default stripe size is 1 MB, and the objects are created
 over all available OSTs.
To view information for a file, enter a command similar to:
$ lfs getstripe /mnt/lustre/foo
/mnt/lustre/foo
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 0
 obdidx objid objid group
 2 835487 m0xcbf9f 0
In this example, the file is located on obdidx 2, which corresponds
 to the OST lustre-OST0002. To see which node is serving that OST, run:

$ lctl get_param osc.lustre-OST0002-osc.ost_conn_uuid
osc.lustre-OST0002-osc.ost_conn_uuid=192.168.20.1@tcp

19.4.2. Inspecting the File Tree

To inspect an entire tree of files, use the lfs find command:
lfs find [--recursive | -r] file|directory ...

19.4.3. Locating the MDT for a remote directory

Introduced in Lustre 2.4Lustre software release 2.4 can be configured with
 multiple MDTs in the same file system. Each sub-directory can have a
 different MDT. To identify on which MDT a given subdirectory is
 located, pass the getstripe [--mdt-index|-M]
 parameters to lfs. An example of this command is
 provided in the section Section 14.9.1, “Removing an MDT from the File System”.

19.5. Progressive File Layout(PFL)

The Lustre Progressive File Layout (PFL) feature simplifies the use
 of Lustre so that users can expect reasonable performance for a variety of
 normal file IO patterns without the need to explicitly understand their IO
 model or Lustre usage details in advance. In particular, users do not
 necessarily need to know the size or concurrency of output files in
 advance of their creation and explicitly specify an optimal layout for
 each file in order to achieve good performance for both highly concurrent
 shared-single-large-file IO or parallel IO to many smaller per-process
 files.
The layout of a PFL file is stored on disk as composite
 layout. A PFL file is essentially an array of
 sub-layout components, with each sub-layout component
 being a plain layout covering different and non-overlapped extents of
 the file. For PFL files, the file layout is composed of a series of
 components, therefore it's possible that there are some file extents are
 not described by any components.
An example of how data blocks of PFL files are mapped to OST objects
 of components is shown in the following PFL object mapping diagram:
Figure 19.1. PFL object mapping diagram
[image: PFL object mapping diagram]

The PFL file in Figure 19.1, “PFL object mapping diagram” has 3
 components and shows the mapping for the blocks of a 2055MB file.
 The stripe size for the first two components is 1MB, while the stripe size
 for the third component is 4MB. The stripe count is increasing for each
 successive component. The first component only has two 1MB blocks and the
 single object has a size of 2MB. The second component holds the next 254MB
 of the file spread over 4 separate OST objects in RAID-0, each one will
 have a size of 256MB / 4 objects = 64MB per object. Note the first two
 objects obj 2,0 and obj 2,1
 have a 1MB hole at the start where the data is stored in the first
 component. The final component holds the next 1800MB spread over 32 OST
 objects. There is a 256MB / 32 = 8MB hole at the start each one for the
 data stored in the first two components. Each object will be
 2048MB / 32 objects = 64MB per object, except the
 obj 3,0 that holds an extra 4MB chunk and
 obj 3,1 that holds an extra 3MB chunk. If more data
 was written to the file, only the objects in component 3 would increase
 in size.
When a file range with defined but not instantiated component is
 accessed, clients will send a Layout Intent RPC to the MDT, and the MDT
 would instantiate the objects of the components covering that range.

Next, some commands for user to operate PFL files are introduced and
 some examples of possible composite layout are illustrated as well.
 Lustre provides commands
 lfs setstripe and lfs migrate for
 users to operate PFL files. lfs setstripe commands
 are used to create PFL files, add or delete components to or from an
 existing composite file; lfs migrate commands are used
 to re-layout the data in existing files using the new layout parameter by
 copying the data from the existing OST(s) to the new OST(s). Also,
 as introduced in the previous sections, lfs getstripe
 commands can be used to list the striping/component information for a
 given PFL file, and lfs find commands can be used to
 search the directory tree rooted at the given directory or file name for
 the files that match the given PFL component parameters.
Note
Using PFL files requires both the client and server to
 understand the PFL file layout, which isn't available for Lustre 2.9 and
 earlier. And it will not prevent older clients from accessing non-PFL
 files in the filesystem.

19.5.1. lfs setstripe

lfs setstripe commands are used to create PFL
 files, add or delete components to or from an existing composite file.
 (Suppose we have 8 OSTs in the following examples and stripe size is 1MB
 by default.)
19.5.1.1. Create a PFL file

Command
lfs setstripe
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... filename
The -E option is used to specify the end offset
 (in bytes or using a suffix “kMGTP”, e.g. 256M) of each component, and
 it also indicates the following STRIPE_OPTIONS are
 for this component. Each component defines the stripe pattern of the
 file in the range of [start, end). The first component must start from
 offset 0 and all components must be adjacent with each other, no holes
 are allowed, so each extent will start at the end of previous extent.
 A -1 end offset or eof indicates
 this is the last component extending to the end of file.
Example
$ lfs setstripe -E 4M -c 1 -E 64M -c 4 -E -1 -c -1 -i 4 \
/mnt/testfs/create_comp
This command creates a file with composite layout illustrated in
 the following figure. The first component has 1 stripe and covers
 [0, 4M), the second component has 4 stripes and covers [4M, 64M), and
 the last component stripes start at OST4, cross over all available
 OSTs and covers [64M, EOF).
Figure 19.2. Example: create a composite file
[image: Example: create a composite file]

The composite layout can be output by the following command:
$ lfs getstripe /mnt/testfs/create_comp
/mnt/testfs/create_comp
 lcm_layout_gen: 3
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lcme_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
Note
Only the first component’s OST objects of the PFL file are
 instantiated when the layout is being set. Other instantiation is
 delayed to later write/truncate operations.

If we write 128M data to this PFL file, the second and third
 components will be instantiated:
$ dd if=/dev/zero of=/mnt/testfs/create_comp bs=1M count=128
$ lfs getstripe /mnt/testfs/create_comp
/mnt/testfs/create_comp
 lcm_layout_gen: 5
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
 - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
 - 2: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
 - 3: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

 lcme_id: 3
 lcme_flags: init
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: 8
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x3:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
 - 2: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 3: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
 - 4: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }
 - 5: { l_ost_idx: 1, l_fid: [0x100010000:0x3:0x0] }
 - 6: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }
 - 7: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }

19.5.1.2. Add component(s) to an existing composite file

Command
lfs setstripe --component-add
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... filename
The option --component-add is used to add
 components to an existing composite file. The extent start of
 the first component to be added is equal to the extent end of last
 component in the existing file, and all components to be added must
 be adjacent with each other.
Note
If the last existing component is specified by
 -E -1 or -E eof, which covers
 to the end of the file, it must be deleted before a new one is added.

Example
$ lfs setstripe -E 4M -c 1 -E 64M -c 4 /mnt/testfs/add_comp
$ lfs setstripe --component-add -E -1 -c 4 -o 6-7,0,5 \
/mnt/testfs/add_comp
This command adds a new component which starts from the end of
 the last existing component to the end of file. The layout of this
 example is illustrated in
	 Figure 19.3, “Example: add a component to an existing composite file”. The last component
 stripes across 4 OSTs in sequence OST6, OST7, OST0 and OST5, covers
 [64M, EOF).
Figure 19.3. Example: add a component to an existing composite file
[image: Example: add a component to an existing composite file]

The layout can be printed out by the following command:
$ lfs getstripe /mnt/testfs/add_comp
/mnt/testfs/add_comp
 lcm_layout_gen: 5
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
 - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
 - 2: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
 - 3: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

 lcme_id: 5
 lcme_flags: 0
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
The component ID "lcme_id" changes as layout generation
 changes. It is not necessarily sequential and does not imply ordering
 of individual components.
Note
Similar to specifying a full-file composite layout at file
 creation time, --component-add won't instantiate
 OST objects, the instantiation is delayed to later write/truncate
 operations. For example, after writing beyond the 64MB start of the
 file's last component, the new component has had objects allocated:

$ lfs getstripe -I5 /mnt/testfs/add_comp
/mnt/testfs/add_comp
 lcm_layout_gen: 6
 lcm_entry_count: 3
 lcme_id: 5
 lcme_flags: init
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 6
 lmm_objects:
 - 0: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
 - 1: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
 - 2: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }
 - 3: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }

19.5.1.3. Delete component(s) from an existing file

Command
lfs setstripe --component-del
[--component-id|-I comp_id | --component-flags comp_flags]
filename
The option --component-del is used to remove
 the component(s) specified by component ID or flags from an existing
 file. This operation will result in any data stored in the deleted
 component will be lost.
The ID specified by -I option is the numerical
 unique ID of the component, which can be obtained by command
 lfs getstripe -I command, and the flag specified by
	 --component-flags option is a certain type of
 components, which can be obtained by command
 lfs getstripe --component-flags. For now, we only
 have two flags init and ^init
 for instantiated and un-instantiated components respectively.
Note
Deletion must start with the last component because hole is
 not allowed.

Example
$ lfs getstripe -I /mnt/testfs/del_comp
1
2
5
$ lfs setstripe --component-del -I 5 /mnt/testfs/del_comp
This example deletes the component with ID 5 from file
 /mnt/testfs/del_comp. If we still use the last
 example, the final result is illustrated in
 Figure 19.4, “Example: delete a component from an existing file”.
Figure 19.4. Example: delete a component from an existing file
[image: Example: delete a component from an existing file]

If you try to delete a non-last component, you will see the
 following error:
$ lfs setstripe -component-del -I 2 /mnt/testfs/del_comp
Delete component 0x2 from /mnt/testfs/del_comp failed. Invalid argument
error: setstripe: delete component of file '/mnt/testfs/del_comp' failed: Invalid argument

19.5.1.4. Set default PFL layout to an existing directory

Similar to create a PFL file, you can set default PFL layout to
 an existing directory. After that, all the files created will inherit
 this layout by default.
Command
lfs setstripe
[--component-end|-E end1] [STRIPE_OPTIONS]
[--component-end|-E end2] [STRIPE_OPTIONS] ... dirname
Example

$ mkdir /mnt/testfs/pfldir
$ lfs setstripe -E 256M -c 1 -E 16G -c 4 -E -1 -S 4M -c -1 /mnt/testfs/pfldir

When you run lfs getstripe, you will see:

$ lfs getstripe /mnt/testfs/pfldir
/mnt/testfs/pfldir
 lcm_layout_gen: 0
 lcm_entry_count: 3
 lcme_id: N/A
 lcme_flags: 0
 lcme_extent.e_start: 0
 lcme_extent.e_end: 268435456
 stripe_count: 1 stripe_size: 1048576 stripe_offset: -1
 lcme_id: N/A
 lcme_flags: 0
 lcme_extent.e_start: 268435456
 lcme_extent.e_end: 17179869184
 stripe_count: 4 stripe_size: 1048576 stripe_offset: -1
 lcme_id: N/A
 lcme_flags: 0
 lcme_extent.e_start: 17179869184
 lcme_extent.e_end: EOF
 stripe_count: -1 stripe_size: 4194304 stripe_offset: -1

If you create a file under /mnt/testfs/pfldir,
 the layout of that file will inherit the layout from its parent
 directory:

$ touch /mnt/testfs/pfldir/pflfile
$ lfs getstripe /mnt/testfs/pfldir/pflfile
/mnt/testfs/pfldir/pflfile
 lcm_layout_gen: 2
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 268435456
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0xa:0x0] }

 lcme_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 268435456
 lcme_extent.e_end: 17179869184
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1

 lcme_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 17179869184
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 4194304
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1

Note

 lfs setstripe --component-add/del can't be run
 on a directory, because default layout in directory is likea config,
 which can be arbitrarily changed by lfs setstripe,
 while layout in file may have data (OST objects) attached. If you want
 to delete default layout in a directory, run
	 lfs setstripe -d dirname
	 to return the directory to the filesystem-wide defaults, like:
	

$ lfs setstripe -d /mnt/testfs/pfldir
$ lfs getstripe -d /mnt/testfs/pfldir
/mnt/testfs/pfldir
stripe_count: 1 stripe_size: 1048576 stripe_offset: -1
/mnt/testfs/pfldir/commonfile
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 0
	obdidx		 objid		 objid		 group
	 2	 9	 0x9	 0

	

19.5.2. lfs migrate

lfs migrate commands are used to re-layout the
 data in the existing files with the new layout parameter by copying the
 data from the existing OST(s) to the new OST(s).
Command
lfs migrate [--component-end|-E comp_end] [STRIPE_OPTIONS] ...
filename
The difference between migrate and
 setstripe is that migrate is to
 re-layout the data in the existing files, while
 setstripe is to create new files with the specified
 layout.
Example
Case1. Migrate a normal one to a composite
 layout
$ lfs setstripe -c 1 -S 128K /mnt/testfs/norm_to_2comp
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs getstripe /mnt/testfs/norm_to_2comp --yaml
/mnt/testfs/norm_to_comp
lmm_stripe_count: 1
lmm_stripe_size: 131072
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 7
lmm_objects:
 - l_ost_idx: 7
 l_fid: 0x100070000:0x2:0x0
$ lfs migrate -E 1M -S 512K -c 1 -E -1 -S 1M -c 2 \
/mnt/testfs/norm_to_2comp
In this example, a 5MB size file with 1 stripe and 128K stripe size
 is migrated to a composite layout file with 2 components, illustrated in
	Figure 19.5, “Example: migrate normal to composite”.
Figure 19.5. Example: migrate normal to composite
[image: Example: migrate normal to composite]

The stripe information after migration is like:
$ lfs getstripe /mnt/testfs/norm_to_2comp
/mnt/testfs/norm_to_2comp
 lcm_layout_gen: 4
 lcm_entry_count: 2
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 1
 lmm_stripe_size: 524288
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 2
 lmm_objects:
 - 0: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
 - 1: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
Case2. Migrate a composite layout to another
 composite layout
$ lfs setstripe -E 1M -S 512K -c 1 -E -1 -S 1M -c 2 \
/mnt/testfs/2comp_to_3comp
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs migrate -E 1M -S 1M -c 2 -E 4M -S 1M -c 2 -E -1 -S 3M -c 3 \
/mnt/testfs/2comp_to_3comp
In this example, a composite layout file with 2 components is
 migrated a composite layout file with 3 components. If we still use
	the example in case1, the migration process is illustrated in
 Figure 19.6, “Example: migrate composite to composite”.
Figure 19.6. Example: migrate composite to composite
[image: Example: migrate composite to composite]

The stripe information is like:
$ lfs getstripe /mnt/testfs/2comp_to_3comp
/mnt/testfs/2comp_to_3comp
 lcm_layout_gen: 6
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 6
 lmm_objects:
 - 0: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 1: { l_ost_idx: 7, l_fid: [0x100070000:0x3:0x0] }

 lcme_id: 3
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 3
 lmm_stripe_size: 3145728
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }
 - 1: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
 - 2: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }
Case3. Migrate a composite layout to a
 normal one
$ lfs migrate -E 1M -S 1M -c 2 -E 4M -S 1M -c 2 -E -1 -S 3M -c 3 \
/mnt/testfs/3comp_to_norm
$ dd if=/dev/urandom of=/mnt/testfs/norm_to_2comp bs=1M count=5
$ lfs migrate -c 2 -S 2M /mnt/testfs/3comp_to_normal
In this example, a composite file with 3 components is migrated to
 a normal file with 2 stripes and 2M stripe size. If we still use the
 example in Case2, the migration process is illustrated in
 Figure 19.7, “Example: migrate composite to normal”.
Figure 19.7. Example: migrate composite to normal
[image: Example: migrate composite to normal]

The stripe information is like:
$ lfs getstripe /mnt/testfs/3comp_to_norm --yaml
/mnt/testfs/3comp_to_norm
lmm_stripe_count: 2
lmm_stripe_size: 2097152
lmm_pattern: 1
lmm_layout_gen: 7
lmm_stripe_offset: 4
lmm_objects:
 - l_ost_idx: 4
 l_fid: 0x100040000:0x3:0x0
 - l_ost_idx: 5
 l_fid: 0x100050000:0x3:0x0

19.5.3. lfs getstripe

lfs getstripe commands can be used to list the
 striping/component information for a given PFL file. Here, only those
 parameters new for PFL files are shown.
Command
lfs getstripe
[--component-id|-I [comp_id]]
[--component-flags [comp_flags]]
[--component-count]
[--component-start [+-][N][kMGTPE]]
[--component-end|-E [+-][N][kMGTPE]]
dirname|filename
Example
Suppose we already have a composite file
 /mnt/testfs/3comp, created by the following
 command:
$ lfs setstripe -E 4M -c 1 -E 64M -c 4 -E -1 -c -1 -i 4 \
/mnt/testfs/3comp
And write some data
$ dd if=/dev/zero of=/mnt/testfs/3comp bs=1M count=5
Case1. List component ID and its related
 information
	List all the components ID
$ lfs getstripe -I /mnt/testfs/3comp
1
2
3

	List the detailed striping information of component ID=2
$ lfs getstripe -I2 /mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 5
 lmm_objects:
 - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
 - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
 - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

	List the stripe offset and stripe count of component ID=2
$ lfs getstripe -I2 -i -c /mnt/testfs/3comp
 lmm_stripe_count: 4
 lmm_stripe_offset: 5

Case2. List the component which contains the
 specified flag
	List the flag of each component
$ lfs getstripe -component-flag -I /mnt/testfs/3comp
 lcme_id: 1
 lcme_flags: init
 lcme_id: 2
 lcme_flags: init
 lcme_id: 3
 lcme_flags: 0

	List component(s) who is not instantiated
$ lfs getstripe --component-flags=^init /mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 4
 lmm_stripe_offset: 4

Case3. List the total number of all the
 component(s)
	List the total number of all the components
$ lfs getstripe --component-count /mnt/testfs/3comp
3

Case4. List the component with the specified
 extent start or end positions
	List the start position in bytes of each component
$ lfs getstripe --component-start /mnt/testfs/3comp
0
4194304
67108864

	List the start position in bytes of component ID=3
$ lfs getstripe --component-start -I3 /mnt/testfs/3comp
67108864

	List the component with start = 64M
$ lfs getstripe --component-start=64M /mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 4
 lmm_stripe_offset: 4

	List the component(s) with start > 5M
$ lfs getstripe --component-start=+5M /mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 67108864
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 4
 lmm_stripe_offset: 4

	List the component(s) with start < 5M
$ lfs getstripe --component-start=-5M /mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 5
 lmm_objects:
 - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
 - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
 - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

	List the component(s) with start > 3M and end < 70M
$ lfs getstripe --component-start=+3M --component-end=-70M \
/mnt/testfs/3comp
/mnt/testfs/3comp
 lcm_layout_gen: 4
 lcm_entry_count: 3
 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: 67108864
 lmm_stripe_count: 4
 lmm_stripe_size: 1048576
 lmm_pattern: 1
 lmm_layout_gen: 0
 lmm_stripe_offset: 5
 lmm_objects:
 - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
 - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 2: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
 - 3: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

19.5.4. lfs find

lfs find commands can be used to search the
 directory tree rooted at the given directory or file name for the files
 that match the given PFL component parameters. Here, only those
 parameters new for PFL files are shown. Their usages are similar to
 lfs getstripe commands.
Command
lfs find directory|filename
[[!] --component-count [+-=]comp_cnt]
[[!] --component-start [+-=]N[kMGTPE]]
[[!] --component-end|-E [+-=]N[kMGTPE]]
[[!] --component-flags=comp_flags]
Note
If you use --component-xxx options, only
 the composite files will be searched; but if you use
 ! --component-xxx options, all the files will be
 searched.

Example
We use the following directory and composite files to show how
 lfs find works.
$ mkdir /mnt/testfs/testdir
$ lfs setstripe -E 1M -E 10M -E eof /mnt/testfs/testdir/3comp
$ lfs setstripe -E 4M -E 20M -E 30M -E eof /mnt/testfs/testdir/4comp
$ mkdir -p /mnt/testfs/testdir/dir_3comp
$ lfs setstripe -E 6M -E 30M -E eof /mnt/testfs/testdir/dir_3comp
$ lfs setstripe -E 8M -E eof /mnt/testfs/testdir/dir_3comp/2comp
$ lfs setstripe -c 1 /mnt/testfs/testdir/dir_3comp/commnfile
Case1. Find the files that match the specified
 component count condition
Find the files under directory /mnt/testfs/testdir whose number of
 components is not equal to 3.
$ lfs find /mnt/testfs/testdir ! --component-count=3
/mnt/testfs/testdir
/mnt/testfs/testdir/4comp
/mnt/testfs/testdir/dir_3comp/2comp
/mnt/testfs/testdir/dir_3comp/commonfile
Case2. Find the files/dirs that match the
 specified component start/end condition
Find the file(s) under directory /mnt/testfs/testdir with component
 start = 4M and end < 70M
$ lfs find /mnt/testfs/testdir --component-start=4M -E -30M
/mnt/testfs/testdir/4comp
Case3. Find the files/dirs that match the
 specified component flag condition
Find the file(s) under directory /mnt/testfs/testdir whose component
 flags contain init
$ lfs find /mnt/testfs/testdir --component-flag=init
/mnt/testfs/testdir/3comp
/mnt/testfs/testdir/4comp
/mnt/testfs/testdir/dir_3comp/2comp
Note
Since lfs find uses
 "!" to do negative search, we don’t support
 flag ^init here.

19.6. Managing Free Space

To optimize file system performance, the MDT assigns file stripes to OSTs based on two
 allocation algorithms. The round-robin allocator gives
 preference to location (spreading out stripes across OSSs to increase network bandwidth
 utilization) and the weighted allocator gives preference to available space (balancing loads
 across OSTs). Threshold and weighting factors for these two algorithms can be adjusted by the
 user. The MDT reserves 0.1 percent of total OST space and 32 inodes for each OST. The MDT
 stops object allocation for the OST if available space is less than reserved or the OST has
 fewer than 32 free inodes. The MDT starts object allocation when available space is twice
 as big as the reserved space and the OST has more than 64 free inodes. Note, clients
 could append existing files no matter what object allocation state is.
Introduced in Lustre 2.9 The reserved space for each OST can be adjusted by the user. Use the
 lctl set_param command, for example the next command reserve 1GB space
 for all OSTs.

lctl set_param -P osp.*.reserved_mb_low=1024

This section describes how to check available free space on disks and how free space is
 allocated. It then describes how to set the threshold and weighting factors for the allocation
 algorithms.
19.6.1. Checking File System Free Space

Free space is an important consideration in assigning file stripes. The lfs
 df command can be used to show available disk space on the mounted Lustre file
 system and space consumption per OST. If multiple Lustre file systems are mounted, a path
 may be specified, but is not required. Options to the lfs df command are
 shown below.
	
 Option

 	
 Description

	
 -h

 	
 Displays sizes in human readable format (for example: 1K, 234M, 5G).

	
 -i, --inodes

 	
 Lists inodes instead of block usage.

Note
The df -i and lfs df -i commands show the
 minimum number of inodes that can be created in the
 file system at the current time. If the total number of objects available across all of
 the OSTs is smaller than those available on the MDT(s), taking into account the default
 file striping, then df -i will also report a smaller number of inodes
 than could be created. Running lfs df -i will report the actual number
 of inodes that are free on each target.
For ZFS file systems, the number of inodes that can be created is dynamic and depends
 on the free space in the file system. The Free and Total inode counts reported for a ZFS
 file system are only an estimate based on the current usage for each target. The Used
 inode count is the actual number of inodes used by the file system.

Examples
[client1] $ lfs df
UUID 1K-blockS Used Available Use% Mounted on
mds-lustre-0_UUID 9174328 1020024 8154304 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 94181368 56330708 37850660 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 94181368 56385748 37795620 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 94181368 54352012 39829356 57% /mnt/lustre[OST:2]
filesystem summary: 282544104 167068468 39829356 57% /mnt/lustre

[client1] $ lfs df -h
UUID bytes Used Available Use% Mounted on
mds-lustre-0_UUID 8.7G 996.1M 7.8G 11% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 89.8G 53.7G 36.1G 59% /mnt/lustre[OST:0]
ost-lustre-1_UUID 89.8G 53.8G 36.0G 59% /mnt/lustre[OST:1]
ost-lustre-2_UUID 89.8G 51.8G 38.0G 57% /mnt/lustre[OST:2]
filesystem summary: 269.5G 159.3G 110.1G 59% /mnt/lustre

[client1] $ lfs df -i
UUID Inodes IUsed IFree IUse% Mounted on
mds-lustre-0_UUID 2211572 41924 2169648 1% /mnt/lustre[MDT:0]
ost-lustre-0_UUID 737280 12183 725097 1% /mnt/lustre[OST:0]
ost-lustre-1_UUID 737280 12232 725048 1% /mnt/lustre[OST:1]
ost-lustre-2_UUID 737280 12214 725066 1% /mnt/lustre[OST:2]
filesystem summary: 2211572 41924 2169648 1% /mnt/lustre[OST:2]

19.6.2. Stripe Allocation Methods

Two stripe allocation methods are provided:
	Round-robin allocator - When the OSTs have
 approximately the same amount of free space, the round-robin allocator alternates
 stripes between OSTs on different OSSs, so the OST used for stripe 0 of each file is
 evenly distributed among OSTs, regardless of the stripe count. In a simple example with
 eight OSTs numbered 0-7, objects would be allocated like this:

File 1: OST1, OST2, OST3, OST4
File 2: OST5, OST6, OST7
File 3: OST0, OST1, OST2, OST3, OST4, OST5
File 4: OST6, OST7, OST0

Here are several more sample round-robin stripe orders (each letter represents a
 different OST on a single OSS):
	
 3: AAA

 	
 One 3-OST OSS

	
 3x3: ABABAB

 	
 Two 3-OST OSSs

	
 3x4: BBABABA

 	
 One 3-OST OSS (A) and one 4-OST OSS (B)

	
 3x5: BBABBABA

 	
 One 3-OST OSS (A) and one 5-OST OSS (B)

	
 3x3x3: ABCABCABC

 	
 Three 3-OST OSSs

	Weighted allocator - When the free space difference
 between the OSTs becomes significant, the weighting algorithm is used to influence OST
 ordering based on size (amount of free space available on each OST) and location
 (stripes evenly distributed across OSTs). The weighted allocator fills the emptier OSTs
 faster, but uses a weighted random algorithm, so the OST with the most free space is not
 necessarily chosen each time.

The allocation method is determined by the amount of free-space imbalance on the OSTs.
 When free space is relatively balanced across OSTs, the faster round-robin allocator is
 used, which maximizes network balancing. The weighted allocator is used when any two OSTs
 are out of balance by more than the specified threshold (17% by default). The threshold
 between the two allocation methods is defined in the file
 /proc/fs/fsname/lov/fsname-mdtlov/qos_threshold_rr.
To set the qos_threshold_r to 25, enter this
 command on the
 MGS:
lctl set_param lov.fsname-mdtlov.qos_threshold_rr=25

19.6.3. Adjusting the Weighting Between Free Space and Location

The weighting priority used by the weighted allocator is set in the file
 /proc/fs/fsname/lov/fsname-mdtlov/qos_prio_free.
 Increasing the value of qos_prio_free puts more weighting on the amount
 of free space available on each OST and less on how stripes are distributed across OSTs. The
 default value is 91 (percent). When the free space priority is set to
 100 (percent), weighting is based entirely on free space and location
 is no longer used by the striping algorithm.
To change the allocator weighting to 100, enter this command on the
 MGS:
lctl conf_param fsname-MDT0000.lov.qos_prio_free=100
 .
Note
When qos_prio_free is set to 100, a weighted
 random algorithm is still used to assign stripes, so, for example, if OST2 has twice as
 much free space as OST1, OST2 is twice as likely to be used, but it is not guaranteed to
 be used.

19.7. Lustre Striping Internals

Individual files can only be striped over a finite number of OSTs,
 based on the maximum size of the attributes that can be stored on the MDT.
 If the MDT is ldiskfs-based without the ea_inode
 feature, a file can be striped across at most 160 OSTs. With ZFS-based
 MDTs, or if the ea_inode feature is enabled for an
 ldiskfs-based MDT, a file can be striped across up to 2000 OSTs.

Lustre inodes use an extended attribute to record on which OST each
 object is located, and the identifier each object on that OST. The size of
 the extended attribute is a function of the number of stripes.
If using an ldiskfs-based MDT, the maximum number of OSTs over which
 files can be striped can been raised to 2000 by enabling the
 ea_inode feature on the MDT:

tune2fs -O ea_inode /dev/mdtdev

Note
The maximum stripe count for a single file does not limit the
 maximum number of OSTs that are in the filesystem as a whole, only the
 maximum possible size and maximum aggregate bandwidth for the file.

Chapter 20. Data on MDT (DoM)

This chapter describes Data on MDT (DoM).
20.1.

 Introduction to Data on MDT (DoM)

The Lustre Data on MDT (DoM) feature improves small file IO by
 placing small files directly on the MDT, and also improves large file IO
 by avoiding the OST being affected by small random IO that can cause
 device seeking and hurt the streaming IO performance. Therefore, users
 can expect more consistent performance for both small file IO and mixed IO
 patterns.
The layout of a DoM file is stored on disk as a composite layout
 and is a special case of Progressive File Layout (PFL). Please see
 Section 19.5, “Progressive File Layout(PFL)” for more information on PFL. For DoM files, the
 file layout is composed of the component of the file, which is placed on
 an MDT, and the rest of components are placed on OSTs, if needed. The
 first component is placed on the MDT in the MDT object data blocks.
 This component always has one stripe with size equal to the component
 size. Such a component with an MDT layout can be only the first component
 in composite layout. The rest of components are placed over OSTs as usual
 with a RAID0 layout. The OST components are not instantiated until
 a client writes or truncates the file beyond the size of the MDT
 component.

20.2.

 User Commands

Lustre provides the lfs setstripe command for
 users to create DoM files. Also, as usual,
 lfs getstripe command can be used to list the
 striping/component information for a given file, while
 lfs find command can be used to search the directory
 tree rooted at the given directory or file name for the files that match
 the given DoM component parameters, e.g. layout type.
20.2.1.
 lfs setstripe for DoM files

The lfs setstripe command is used to create
 DoM files.
20.2.1.1. Command

lfs setstripe --component-end|-E end1 --layout|-L mdt \
 [--component-end|-E end2 [STRIPE_OPTIONS] ...] <filename>

 The command above creates a file with the special composite
 layout, which defines the first component as an MDT component. The
 MDT component must start from offset 0 and ends at
 end1. The
 end1 is also the stripe size of this
 component, and is limited by the
 lod.*.dom_stripesize of the MDT the file is
 created on. No other options are required for this component.
 The rest of the components use the normal syntax for composite
 files creation.

Note
If the next component doesn't specify striping, such
 as:

lfs setstripe -E 1M -L mdt -E EOF <filename>

 Then that component get its settings from the default filesystem
 striping.

20.2.1.2. Example

The command below creates a file with a DoM layout. The first
 component has an mdt layout and is placed on the
 MDT, covering [0, 1M). The second component covers [1M, EOF) and is
 striped over all available OSTs.
client$ lfs setstripe -E 1M -L mdt -E -1 -S 4M -c -1 \
 /mnt/lustre/domfile
The resulting layout is illustrated by
 Figure 20.1, “Resulting file layout”.
Figure 20.1. Resulting file layout
[image: Resulting file layout]

The resulting can also be checked with
 lfs getstripe as shown below:
client$ lfs getstripe /mnt/lustre/domfile
/mnt/lustre/domfile
 lcm_layout_gen: 2
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 0
 lmm_stripe_size: 1048576
 lmm_pattern: mdt
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:

 lcme_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 4194304
 lmm_pattern: raid0
 lmm_layout_gen: 65535
 lmm_stripe_offset: -1
The output above shows that the first component has size 1MB and
 pattern is 'mdt'. The second component is not instantiated yet, which
 is seen by lcme_flags: 0.
If more than 1MB of data is written to the file, then
 lfs getstripe output is changed accordingly:
client$ lfs getstripe /mnt/lustre/domfile
/mnt/lustre/domfile
 lcm_layout_gen: 3
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 0
 lmm_stripe_size: 1048576
 lmm_pattern: mdt
 lmm_layout_gen: 0
 lmm_stripe_offset: 2
 lmm_objects:

 lcme_id: 2
 lcme_flags: init
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 4194304
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }
 - 1: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
The output above shows that the second component now has objects
 on OSTs with a 4MB stripe.

20.2.2. Setting a default DoM layout to an existing directory

A DoM layout can be set on an existing directory as well. When
 set, all the files created after that will inherit this layout by
 default.
20.2.2.1. Command

lfs setstripe --component-end|-E end1 --layout|-L mdt \
[--component-end|-E end2 [STRIPE_OPTIONS] ...] <dirname>

20.2.2.2. Example

client$ mkdir /mnt/lustre/domdir
client$ touch /mnt/lustre/domdir/normfile
client$ lfs setstripe -E 1M -L mdt -E -1 /mnt/lustre/domdir/
client$ lfs getstripe -d /mnt/lustre/domdir
 lcm_layout_gen: 0
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: N/A
 lcme_flags: 0
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 stripe_count: 0 stripe_size: 1048576 \
 pattern: mdt stripe_offset: -1

 lcme_id: N/A
 lcme_flags: 0
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: EOF
 stripe_count: 1 stripe_size: 1048576 \
 pattern: raid0 stripe_offset: -1

In the output above, it can be seen that the directory has
 a default layout with a DoM component.
The following example will check layouts of files in that
 directory:
client$ touch /mnt/lustre/domdir/domfile
client$ lfs getstripe /mnt/lustre/domdir/normfile
/mnt/lustre/domdir/normfile
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 1
 obdidx objid objid group
 1 3 0x3 0
 0 3 0x3 0

client$ lfs getstripe /mnt/lustre/domdir/domfile
/mnt/lustre/domdir/domfile
 lcm_layout_gen: 2
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 0
 lmm_stripe_size: 1048576
 lmm_pattern: mdt
 lmm_layout_gen: 0
 lmm_stripe_offset: 2
 lmm_objects:

 lcme_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 1048576
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 65535
 lmm_stripe_offset: -1
We can see that first file
 normfile in that directory has an
 ordinary layout, whereas the file domfile
 inherits the directory default layout and is a DoM
 file.
Note
The directory default layout setting will be inherited
 by new files even if the server DoM size limit will be set to a
 lower value.

20.2.3.

 DoM Stripe Size Restrictions

The maximum size of a DoM component is restricted in several
 ways to protect the MDT from being eventually filled with large files.

20.2.3.1. LFS limits for DoM component size

lfs setstripe allows for setting the
 component size for MDT layouts up to 1GB (this is a compile-time
 limit to avoid improper configuration), however, the size must
 also be aligned by 64KB due to the minimum stripe size in Lustre
 (see Table 5.2, “File and file system limits”
 Minimum stripe size). There is also a limit
 imposed on each file by lfs setstripe -E end
 that may be smaller than the MDT-imposed limit if this is better
 for a particular usage.

20.2.3.2. MDT Server Limits

The lod.$fsname-MDTxxxx.dom_stripesize
 is used to control the per-MDT maximum size for a DoM component.
 Larger DoM components specified by the user will be truncated to
 the MDT-specified limit, and as such may be different on each
 MDT to balance DoM space usage on each MDT separately, if needed.
 It is 1MB by default and can be changed with the
 lctl tool. For more information on setting
 dom_stripesize please see
 Section 20.2.6, “

 The dom_stripesize parameter”.

20.2.4.

 lfs getstripe for DoM files

The lfs getstripe command is used to list
 the striping/component information for a given file. For DoM files, it
 can be used to check its layout and size.
20.2.4.1. Command

lfs getstripe [--component-id|-I [comp_id]] [--layout|-L] \
 [--stripe-size|-S] <dirname|filename>

20.2.4.2. Examples

client$ lfs getstripe -I1 /mnt/lustre/domfile
/mnt/lustre/domfile
 lcm_layout_gen: 3
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 1048576
 lmm_stripe_count: 0
 lmm_stripe_size: 1048576
 lmm_pattern: mdt
 lmm_layout_gen: 0
 lmm_stripe_offset: 2
 lmm_objects:
Short info about the layout and size of DoM component can
 be obtained with the use of the -L option
 along with -S or -E options:

client$ lfs getstripe -I1 -L -S /mnt/lustre/domfile
 lmm_stripe_size: 1048576
 lmm_pattern: mdt
client$ lfs getstripe -I1 -L -E /mnt/lustre/domfile
 lcme_extent.e_end: 1048576
 lmm_pattern: mdt

 Both commands return layout type and its size. The stripe size is
 equal to the extent size of component in case of DoM files, so
 both can be used to get size on the MDT.

20.2.5.

 lfs find for DoM files

The lfs find command can be used to search
 the directory tree rooted at the given directory or file name for the
 files that match the given parameters. The command below shows the new
 parameters for DoM files and their usages are similar to the
 lfs getstripe command.
20.2.5.1. Command

lfs find <directory|filename> [--layout|-L] [...]

20.2.5.2. Examples

Find all files with DoM layout under directory
 /mnt/lustre:

client$ lfs find -L mdt /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir
/mnt/lustre/domdir/domfile

client$ lfs find -L mdt -type f /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir/domfile

client$ lfs find -L mdt -type d /mnt/lustre
/mnt/lustre/domdir

 By using this command you can find all DoM objects, only DoM
 files, or only directories with default DoM layout.
Find the DoM files/dirs with a particular stripe size:

client$ lfs find -L mdt -S -1200K -type f /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir/domfile

client$ lfs find -L mdt -S +200K -type f /mnt/lustre
/mnt/lustre/domfile
/mnt/lustre/domdir/domfile

 The first command finds all DoM files with stripe size less
 than 1200KB. The second command above does the same for files
 with a stripe size greater than 200KB. In both cases, all DoM
 files are found because their DoM size is 1MB.

20.2.6.

 The dom_stripesize parameter

The MDT controls the default maximum DoM size on the server via
 the parameter dom_stripesize in the LOD device.
 The dom_stripesize can be set differently for each
 MDT, if necessary. The default value of the parameter is 1MB and can
 be changed with lctl tool.
20.2.6.1. Get Command

lctl get_param lod.*MDT<index>*.dom_stripesize

20.2.6.2. Get Examples

The commands below get the maximum allowed DoM size on the
 server. The final command is an attempt to create a file with a
 larger size than the parameter setting and correctly fails.

mds# lctl get_param lod.*MDT0000*.dom_stripesize
lod.lustre-MDT0000-mdtlov.dom_stripesize=1048576

mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
1048576

client$ lfs setstripe -E 2M -L mdt /mnt/lustre/dom2mb
Create composite file /mnt/lustre/dom2mb failed. Invalid argument
error: setstripe: create composite file '/mnt/lustre/dom2mb' failed:
Invalid argument

20.2.6.3. Temporary Set Command

To temporarily set the value of the parameter, the
 lctl set_param is used:

lctl set_param lod.*MDT<index>*.dom_stripesize=<value>

20.2.6.4. Temporary Set Examples

The example below shows a change to the default DoM limit on
 the server to 64KB and try to create a file with 1MB DoM size
 after that.

mds# lctl set_param -n lod.*MDT0000*.dom_stripesize=64K
mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
65536

client$ lfs setstripe -E 1M -L mdt /mnt/lustre/dom
Create composite file /mnt/lustre/dom failed. Invalid argument
error: setstripe: create composite file '/mnt/lustre/dom' failed:
Invalid argument

20.2.6.5. Persistent Set Command

To persistently set the value of the parameter, the
 lctl conf_param command is used:

lctl conf_param <fsname>-MDT<index>.lod.dom_stripesize=<value>

20.2.6.6. Persistent Set Examples

The new value of the parameter is saved in config log
 permanently:

mgs# lctl conf_param lustre-MDT0000.lod.dom_stripesize=512K
mds# lctl get_param -n lod.*MDT0000*.dom_stripesize
524288

 New settings are applied in few seconds and saved persistently in
 server config.

20.2.7.

 Disable DoM

When lctl set_param or
 lctl conf_param sets
 dom_stripesize to 0, DoM
 component creation will be disabled on the selected server, and
 any new layouts with a specified DoM component
 will have that component removed from the file layout. Existing
 files and layouts with DoM components on that MDT are not changed.

Note
DoM files can still be created in existing directories
 with a default DoM layout.

Chapter 21. Lazy Size on MDT (LSoM)

This chapter describes Lazy Size on MDT (LSoM).
21.1.
 Introduction to Lazy Size on MDT (LSoM)

In the Lustre file system, MDSs store the ctime, mtime, owner,
 and other file attributes. The OSSs store the size and number of
 blocks used for each file. To obtain the correct file size, the client
 must contact each OST that the file is stored across, which means
 multiple RPCs to get the size and blocks for a file when a file is
 striped over multiple OSTs. The Lazy Size on MDT (LSoM) feature stores
 the file size on the MDS and avoids the need to fetch the file size
 from the OST(s) in cases where the application understands that the
 size may not be accurate. Lazy means there is no guarantee of the
 accuracy of the attributes stored on the MDS.
Since many Lustre installations use SSD for MDT storage, the
 motivation for the LSoM work is to speed up the time it takes to get
 the size of a file from the Lustre file system by storing that data on
 the MDTs. We expect this feature to be initially used by Lustre policy
 engines that scan the backend MDT storage, make decisions based on broad
 size categories, and do not depend on a totally accurate file size.
 Examples include Lester, Robinhood, Zester, and DDN’s Lustre Integrated
 Policy Engine (LiPE). Future improvements will allow the LSoM data to be
 accessed by tools such as lfs find.

21.2. Enable LSoM

 LSoM is always enabled and nothing needs to be done to enable the
 feature for fetching the LSoM data when scanning the MDT inodes with a
 policy engine. It is also possible to access the LSoM data on the client
 via the lfs getsom command. Because the LSoM data is
 currently accessed on the client via the xattr interface, the
 xattr_cache will cache the file size and block count on
 the client as long as the inode is cached. In most cases this is
 desirable, since it improves access to the LSoM data. However, it also
 means that the LSoM data may be stale if the file size is changed after the
 xattr is first accessed or if the xattr is accessed shortly after the file
 is first created.
If it is necessary to access up-to-date LSoM data that has gone
 stale, it is possible to flush the xattr cache from the client by
 cancelling the MDC locks via
 ldlm set_param ldlm.namespaces.*mdc*.lru_size=clear.
 Otherwise, the file attributes will be dropped from the client cache if
 the file has not been accessed before the LDLM lock timeout. The timeout
 is stored via
 lctl get_param ldlm.namespaces.*mdc*.lru_max_age.
If repeated access to LSoM attributes for files that are recently
 created or frequently modified from a specific client, such as an HSM agent
 node, it is possible to disable xattr caching on a client via:
 lctl set_param llite.*.xattr_cache=0. This may cause
 extra overhead when accessing files, and is not recommended for normal
 usage.

21.3. User Commands

Lustre provides the lfs getsom command to list
 file attributes that are stored on the MDT.
The llsom_sync command allows the user to sync
 the file attributes on the MDT with the valid/up-to-date data on the
 OSTs. llsom_sync is called on the client with the
 Lustre file system mount point. llsom_sync uses Lustre
 MDS changelogs and, thus, a changelog user must be registered to use this
 utility.
21.3.1. lfs getsom for LSoM data

The lfs getsom command lists file attributes
 that are stored on the MDT. lfs getsom is called
 with the full path and file name for a file on the Lustre file
 system. If no flags are used, then all file attributes stored on the
 MDS will be shown.
21.3.1.1. lfs getsom Command

lfs getsom [-s] [-b] [-f] <filename>

 The various lfs getsom options are listed and
 described below.
	

 Option

 	

 Description

	

 -s

 	
 Only show the size value of the LSoM data for a given
 file. This is an optional flag

	

 -b

 	
 Only show the blocks value of the LSoM data for a
 given file. This is an optional flag

	

 -f

 	
 Only show the flag value of the LSoM data for a given
 file. This is an optional flag. Valid flags are:

 SOM_FL_UNKNOWN = 0x0000 - Unknown or no SoM data,
 must get size from OSTs.

 SOM_FL_STRICT = 0x0001 - Known strictly correct, FLR
 file (SoM guaranteed)

 SOM_FL_STALE = 0x0002 - Known stale -was right at
 some point in the past, but it is known (or likely) to be
 incorrect now (e.g. opened for write)

 SOM_FL_LAZY= 0x0004 - Approximate, may never have
 been strictly correct, need to sync SOM data to achieve
 eventual consistency.

21.3.2. Syncing LSoM data

The llsom_sync command allows the user to sync
 the file attributes on the MDT with the valid/up-to-date data on the
 OSTs. llsom_sync is called on the client with the
 client mount point for the Lustre file system.
 llsom_sync uses Lustre MDS changelogs and, thus, a
 changelog user must be registered to use this utility.
21.3.2.1. llsom_sync Command

llsom_sync --mdt|-m <mdt> --user|-u <user_id>
 [--daemonize|-d] [--verbose|-v] [--interval|-i] [--min-age|-a]
 [--max-cache|-c] [--sync|-s] <lustre_mount_point>
The various llsom_sync options are
 listed and described below.
	
 Option

 	
 Description

	
 --mdt | -m <mdt>

 	
 The metadata device which need to be synced the LSoM
 xattr of files. A changelog user must be registered for
 this device.Required flag.

	
 --user | -u <user_id>

 	
 The changelog user id for the MDT device. Required
 flag.

	
 --daemonize | -d

 	
 Optional flag to “daemonize” the program. In daemon
 mode, the utility will scan, process the changelog records
 and sync the LSoM xattr for files periodically.

	
 --verbose | -v

 	
 Optional flag to produce verbose output.

	
 --interval | -i

 	
 Optional flag for the time interval to scan the
 Lustre changelog and process the log record in daemon
 mode.

	
 --min-age | -a

 	
 Optional flag for the time that
 llsom_sync tool will not try to sync the
 LSoM data for any files closed less than this many seconds
 old. The default min-age value is 600s(10 minutes).

	
 --max-cache | -c

 	
 Optional flag for the total memory used for the FID
 cache which can be with a suffix [KkGgMm].The default
 max-cache value is 256MB. For the parameter value < 100,
 it is taken as the percentage of total memory size used for
 the FID cache instead of the cache size.

	
 --sync | -s

 	
 Optional flag to sync file data to make the dirty
 data out of cache to ensure the blocks count is correct
 when update the file LSoM xattr. This option could hurt
 server performance significantly if thousands of fsync
 requests are sent.

Chapter 22. File Level Redundancy (FLR)

This chapter describes File Level Redundancy (FLR).
22.1. Introduction

 The Lustre file system was initially designed and implemented for HPC
 use. It has been working well on high-end storage that has internal
 redundancy and fault-tolerance. However, despite the expense and
 complexity of these storage systems, storage failures still occur, and
 before release 2.11, Lustre could not be more reliable than the
 individual storage and servers’ components on which it was based. The
 Lustre file system had no mechanism to mitigate storage hardware
 failures and files would become inaccessible if a server was inaccessible
 or otherwise out of service.
With the File Level Redundancy (FLR) feature introduced in Lustre
 Release 2.11, any Lustre file can store the same data on multiple OSTs in
 order for the system to be robust in the event of storage failures or
 other outages. With the choice of multiple mirrors, the best suited
 mirror can be chosen to satisfy an individual request, which has a direct
 impact on IO availability. Furthermore, for files that are concurrently
 read by many clients (e.g. input decks, shared libraries, or executables)
 the aggregate parallel read performance of a single file can be improved
 by creating multiple mirrors of the file data.
The first phase of the FLR feature has been implemented with delayed
 write (Figure 22.1, “FLR Delayed Write”). While writing to a
 mirrored file, only one primary or preferred mirror will be updated
 directly during the write, while other mirrors will be simply marked as
 stale. The file can subsequently return to a mirrored state again by
 synchronizing among mirrors with command line tools (run by the user or
 administrator directly or via automated monitoring tools).
Figure 22.1. FLR Delayed Write
[image: FLR Delayed Write Diagram]

22.2. Operations

Lustre provides lfs mirror command line tools for
 users to operate on mirrored files or directories.
22.2.1. Creating a Mirrored File or Directory

Command:
lfs mirror create <--mirror-count|-N[mirror_count]
[setstripe_options|[--flags<=flags>]]> ... <filename|directory>
The above command will create a mirrored file or directory specified
 by filename or
 directory, respectively.
	Option	Description
	--mirror-count|-N[mirror_count]	
 Indicates the number of mirrors to be created with the
 following setstripe options. It can be repeated multiple
 times to separate mirrors that have different layouts.

 The mirror_count argument is
 optional and defaults to 1 if it is not
 specified; if specified, it must follow the option without a
 space.

	setstripe_options	
 Specifies a specific layout for the mirror. It can be a
 plain layout with a specific striping pattern or a composite
 layout, such as Section 19.5, “Progressive File Layout(PFL)”. The options are
 the same as those for the lfs setstripe
 command.

 If setstripe_options are not
 specified, then the stripe options inherited from the previous
 component will be used. If there is no previous component,
 then the stripe_count and
 stripe_size options inherited from the
 filesystem-wide default values will be used, and the OST
 pool_name inherited from the parent
 directory will be used.

	--flags<=flags>	
 Sets flags to the mirror to be created.

 Only the prefer flag is supported at
 this time. This flag will be set to all components that belong
 to the corresponding mirror. The prefer
 flag gives a hint to Lustre for which mirrors should be used
 to serve I/O. When a mirrored file is being read, the
 component(s) with the prefer flag is likely
 to be picked to serve the read; and when a mirrored file is
 prepared to be written, the MDT will tend to choose the
 component with the prefer flag set and
 mark the other components with overlapping extents as stale.
 This flag just provides a hint to Lustre, which means Lustre
 may still choose mirrors without this flag set, for instance,
 if all preferred mirrors are unavailable when the I/O occurs.
 This flag can be set on multiple components.

 Note: This flag will
 be set to all components that belong to the corresponding
 mirror. The --comp-flags option also
 exists, which can be set to individual components at mirror
 creation time.

Note: For redundancy and
 fault-tolerance, users need to make sure that different mirrors must
 be on different OSTs, even OSSs and racks. An understanding of cluster
 topology is necessary to achieve this architecture. In the initial
 implementation the use of the existing OST pools mechanism will allow
 separating OSTs by any arbitrary criteria: i.e. fault domain.
 In practice, users can take advantage of OST pools by grouping OSTs
 by topological information. Therefore, when creating a mirrored file,
 users can indicate which OST pools can be used by mirrors.
Examples:
The following command creates a mirrored file with 2 plain layout
 mirrors:
client# lfs mirror create -N -S 4M -c 2 -p flash \
 -N -c -1 -p archive /mnt/testfs/file1
The following command displays the layout information of the
 mirrored file /mnt/testfs/file1:
client# lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 2
 lcm_mirror_count: 2
 lcm_entry_count: 2
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 4194304
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x2:0x0] }
 - 1: { l_ost_idx: 0, l_fid: [0x100000000:0x2:0x0] }

 lcme_id: 131074
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 6
 lmm_stripe_size: 4194304
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 3
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x2:0x0] }
 - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x2:0x0] }
 - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x2:0x0] }
 - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x2:0x0] }
 - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x2:0x0] }
 - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x2:0x0] }
 The first mirror has 4MB stripe size and two stripes across OSTs in
 the “flash” OST pool. The second mirror has 4MB stripe size inherited
 from the first mirror, and stripes across all of the available OSTs in
 the “archive” OST pool.
As mentioned above, it is recommended to use the
 --pool|-p option (one of the
 lfs setstripe options) with OST pools configured with
 independent fault domains to ensure different mirrors will be placed on
 different OSTs, servers, and/or racks, thereby improving availability
 and performance. If the setstripe options are not specified, it is
 possible to create mirrors with objects on the same OST(s), which would
 remove most of the benefit of using replication.
In the layout information printed by lfs getstripe,
 lcme_mirror_id shows mirror ID, which is the unique
 numerical identifier for a mirror. And lcme_flags shows
 mirrored component flags. Valid flag names are:
	init - indicates mirrored component has been
 initialized (has allocated OST objects).

	stale - indicates mirrored component does not
 have up-to-date data. Stale components will not be used for read or
 write operations, and need to be resynchronized by running
 lfs mirror resync command before they can be
 accessed again.

	prefer - indicates mirrored component is
 preferred for read or write. For example, the mirror is located on
 SSD-based OSTs or is closer, fewer hops, on the network to the
 client. This flag can be set by users at mirror creation time.

The following command creates a mirrored file with 3 PFL mirrors:

client# lfs mirror create -N -E 4M -p flash --flags=prefer -E eof -c 2 \
-N -E 16M -S 8M -c 4 -p archive --comp-flags=prefer -E eof -c -1 \
-N -E 32M -c 1 -p none -E eof -c -1 /mnt/testfs/file2
The following command displays the layout information of the
 mirrored file /mnt/testfs/file2:
client# lfs getstripe /mnt/testfs/file2
/mnt/testfs/file2
 lcm_layout_gen: 6
 lcm_mirror_count: 3
 lcm_entry_count: 6
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init,prefer
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x3:0x0] }

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: prefer
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: flash

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init,prefer
 lcme_extent.e_start: 0
 lcme_extent.e_end: 16777216
 lmm_stripe_count: 4
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x3:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x3:0x0] }
 - 2: { l_ost_idx: 6, l_fid: [0x100060000:0x3:0x0] }
 - 3: { l_ost_idx: 7, l_fid: [0x100070000:0x3:0x0] }

 lcme_id: 131076
 lcme_mirror_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 16777216
 lcme_extent.e_end: EOF
 lmm_stripe_count: 6
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: archive

 lcme_id: 196613
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 33554432
 lmm_stripe_count: 1
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x3:0x0] }

 lcme_id: 196614
 lcme_mirror_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 33554432
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
For the first mirror, the first component inherits the stripe count
 and stripe size from filesystem-wide default values. The second
 component inherits the stripe size and OST pool from the first
 component, and has two stripes. Both of the components are allocated
 from the “flash” OST pool. Also, the flag prefer is
 applied to all the components of the first mirror, which tells the
 client to read data from those components whenever they are available.

For the second mirror, the first component has an 8MB stripe size
 and 4 stripes across OSTs in the “archive” OST pool. The second
 component inherits the stripe size and OST pool from the first
 component, and stripes across all of the available OSTs in the “archive”
 OST pool. The flag prefer is only applied to the
 first component.
For the third mirror, the first component inherits the stripe size
 of 8MB from the last component of the second mirror, and has one single
 stripe. The OST pool name is cleared and inherited from the parent
 directory (if it was set with OST pool name). The second component
 inherits stripe size from the first component, and stripes across all of
 the available OSTs.

22.2.2. Extending a Mirrored File

Command:
lfs mirror extend [--no-verify] <--mirror-count|-N[mirror_count]
[setstripe_options|-f <victim_file>]> ... <filename>
The above command will append mirror(s) indicated by
 setstripe options or just take the layout from
 existing file victim_file into the file
 filename. The
 filename must be an existing file, however,
 it can be a mirrored or regular non-mirrored file. If it is a
 non-mirrored file, the command will convert it to a mirrored file.

	Option	Description
	--mirror-count|-N[mirror_count]	
 Indicates the number of mirrors to be added with the
 following setstripe options. It can be
 repeated multiple times to separate mirrors that have
 different layouts.

 The mirror_count argument is
 optional and defaults to 1 if it is not
 specified; if specified, it must follow the option without a
 space.

	setstripe_options	
 Specifies a specific layout for the mirror. It can be a
 plain layout with specific striping pattern or a composite
 layout, such as Section 19.5, “Progressive File Layout(PFL)”. The options are the
 same as those for the lfs setstripe
 command.

 If setstripe_options are not
 specified, then the stripe options inherited from the previous
 component will be used. If there is no previous component,
 then the stripe_count and
 stripe_size options inherited from
 filesystem-wide default values will be used, and the OST
 pool_name inherited from parent directory
 will be used.

	-f <victim_file>	
 If victim_file exists, the
 command will split the layout from that file and use it as a
 mirror added to the mirrored file. After the command is
 finished, the victim_file will be
 removed.

 Note: The
 setstripe_options cannot be
 specified with -f <victim_file>
 option in one command line.

	--no-verify	If victim_file is specified, the
 command will verify that the file contents from
 victim_file are the same as
 filename. Otherwise, the command
 will return a failure. However, the option
 --no-verify can be used to override this
 verification. This option can save significant time on file
 comparison if the file size is large, but use it only when the
 file contents are known to be the same.

Note: The
 lfs mirror extend operation won't be applied to the
 directory.
Examples:
The following commands create a non-mirrored file, convert it to
 a mirrored file, and extend it with a plain layout mirror:
lfs setstripe -p flash /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
lmm_stripe_count: 1
lmm_stripe_size: 1048576
lmm_pattern: raid0
lmm_layout_gen: 0
lmm_stripe_offset: 0
lmm_pool: flash
 obdidx objid objid group
 0 4 0x4 0

lfs mirror extend -N -S 8M -c -1 -p archive /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 2
 lcm_mirror_count: 2
 lcm_entry_count: 2
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x4:0x0] }

 lcme_id: 131073
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 6
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 3
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }
 - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x4:0x0] }
 - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }
 - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
 - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
 - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }
The following commands split the PFL layout from a
 victim_file and use it as a mirror added to
 the mirrored file /mnt/testfs/file1 created in the
 above example without data verification:
lfs setstripe -E 16M -c 2 -p none \
 -E eof -c -1 /mnt/testfs/victim_file
lfs getstripe /mnt/testfs/victim_file
/mnt/testfs/victim_file
 lcm_layout_gen: 2
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 1
 lcme_mirror_id: 0
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 16777216
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 5
 lmm_objects:
 - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x5:0x0] }
 - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x5:0x0] }

 lcme_id: 2
 lcme_mirror_id: 0
 lcme_flags: 0
 lcme_extent.e_start: 16777216
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1

lfs mirror extend --no-verify -N -f /mnt/testfs/victim_file \
 /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 3
 lcm_mirror_count: 3
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x4:0x0] }

 lcme_id: 131073
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 6
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 3
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x3:0x0] }
 - 1: { l_ost_idx: 4, l_fid: [0x100040000:0x4:0x0] }
 - 2: { l_ost_idx: 5, l_fid: [0x100050000:0x4:0x0] }
 - 3: { l_ost_idx: 6, l_fid: [0x100060000:0x4:0x0] }
 - 4: { l_ost_idx: 7, l_fid: [0x100070000:0x4:0x0] }
 - 5: { l_ost_idx: 2, l_fid: [0x100020000:0x3:0x0] }

 lcme_id: 196609
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 16777216
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 5
 lmm_objects:
 - 0: { l_ost_idx: 5, l_fid: [0x100050000:0x5:0x0] }
 - 1: { l_ost_idx: 6, l_fid: [0x100060000:0x5:0x0] }

 lcme_id: 196610
 lcme_mirror_id: 3
 lcme_flags: 0
 lcme_extent.e_start: 16777216
 lcme_extent.e_end: EOF
 lmm_stripe_count: -1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
After extending, the victim_file was
 removed:
ls /mnt/testfs/victim_file
ls: cannot access /mnt/testfs/victim_file: No such file or directory

22.2.3. Splitting a Mirrored File

Command:
lfs mirror split <--mirror-id <mirror_id>>
[--destroy|-d] [-f <new_file>] <mirrored_file>
The above command will split a specified mirror with ID
 <mirror_id> out of an existing mirrored
 file specified by
 mirrored_file. By default, a new file named
 <mirrored_file>.mirror~<mirror_id> will
 be created with the layout of the split mirror. If the
 --destroy|-d option is specified, then the split
 mirror will be destroyed. If the -f <new_file>
 option is specified, then a file named
 new_file will be created with the layout of
 the split mirror. If mirrored_file has only
 one mirror existing after split, it will be converted to a regular
 non-mirrored file. If the original
 mirrored_file is not a mirrored file, then
 the command will return an error.
	Option	Description
	--mirror-id <mirror_id>	The unique numerical identifier for a mirror. The mirror
 ID is unique within a mirrored file and is automatically
 assigned at file creation or extension time. It can be fetched
 by the lfs getstripe command.

	--destroy|-d	Indicates the split mirror will be destroyed.
	-f <new_file>	Indicates a file named new_file
 will be created with the layout of the split mirror.

Examples:
The following commands create a mirrored file with 4 mirrors, then
 split 3 mirrors separately from the mirrored file.
Creating a mirrored file with 4 mirrors:
lfs mirror create -N2 -E 4M -p flash -E eof -c -1 \
 -N2 -S 8M -c 2 -p archive /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 6
 lcm_mirror_count: 4
 lcm_entry_count: 6
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x4:0x0] }

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: flash

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 0
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 0, l_fid: [0x100000000:0x5:0x0] }

 lcme_id: 131076
 lcme_mirror_id: 2
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: flash

 lcme_id: 196613
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

 lcme_id: 262150
 lcme_mirror_id: 4
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 7
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
 - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }
Splitting the mirror with ID 1 from
 /mnt/testfs/file1 and creating
 /mnt/testfs/file1.mirror~1 with the layout of the
 split mirror:
lfs mirror split --mirror-id 1 /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1.mirror~1
/mnt/testfs/file1.mirror~1
 lcm_layout_gen: 1
 lcm_mirror_count: 1
 lcm_entry_count: 2
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x4:0x0] }

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: flash
Splitting the mirror with ID 2 from
 /mnt/testfs/file1 and destroying it:
lfs mirror split --mirror-id 2 -d /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 8
 lcm_mirror_count: 2
 lcm_entry_count: 2
 lcme_id: 196613
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

 lcme_id: 262150
 lcme_mirror_id: 4
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 7
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
 - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }
Splitting the mirror with ID 3 from
 /mnt/testfs/file1 and creating
 /mnt/testfs/file2 with the layout of the split
 mirror:
lfs mirror split --mirror-id 3 -f /mnt/testfs/file2 \
 /mnt/testfs/file1
lfs getstripe /mnt/testfs/file2
/mnt/testfs/file2
 lcm_layout_gen: 1
 lcm_mirror_count: 1
 lcm_entry_count: 1
 lcme_id: 196613
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x5:0x0] }
 - 1: { l_ost_idx: 5, l_fid: [0x100050000:0x6:0x0] }

lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 9
 lcm_mirror_count: 1
 lcm_entry_count: 1
 lcme_id: 262150
 lcme_mirror_id: 4
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 2
 lmm_stripe_size: 8388608
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 7
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 7, l_fid: [0x100070000:0x5:0x0] }
 - 1: { l_ost_idx: 2, l_fid: [0x100020000:0x4:0x0] }
The above layout information showed that mirrors with ID
 1, 2, and 3 were all split from the mirrored file
 /mnt/testfs/file1.

22.2.4. Resynchronizing out-of-sync Mirrored File(s)

Command:
lfs mirror resync [--only <mirror_id[,...]>]
<mirrored_file> [<mirrored_file2>...]
The above command will resynchronize out-of-sync mirrored file(s)
 specified by mirrored_file. It
 supports specifying multiple mirrored files in one command line.
If there is no stale mirror for the specified mirrored file(s), then
 the command does nothing. Otherwise, it will copy data from synced
 mirror to the stale mirror(s), and mark all successfully copied
 mirror(s) as SYNC. If the
 --only <mirror_id[,...]> option is specified,
 then the command will only resynchronize the mirror(s) specified by the
 mirror_id(s). This option cannot be used when
 multiple mirrored files are specified.
	Option	Description
	--only <mirror_id[,...]>	Indicates which mirror(s) specified by
 mirror_id(s) needs to be
 resynchronized. The mirror_id is the
 unique numerical identifier for a mirror. Multiple
 mirror_ids are separated by comma.
 This option cannot be used when multiple mirrored files are
 specified.

Note: With delayed write
 implemented in FLR phase 1, after writing to a mirrored file, users
 need to run lfs mirror resync command to get all
 mirrors synchronized.
Examples:
The following commands create a mirrored file with 3 mirrors, then
 write some data into the file and resynchronizes stale mirrors.
Creating a mirrored file with 3 mirrors:
lfs mirror create -N -E 4M -p flash -E eof \
 -N2 -p archive /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 4
 lcm_mirror_count: 3
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 1
 lmm_pool: flash
 lmm_objects:
 - 0: { l_ost_idx: 1, l_fid: [0x100010000:0x5:0x0] }

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: -1
 lmm_pool: flash

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 3
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 3, l_fid: [0x100030000:0x4:0x0] }

 lcme_id: 196612
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF
 lmm_stripe_count: 1
 lmm_stripe_size: 1048576
 lmm_pattern: raid0
 lmm_layout_gen: 0
 lmm_stripe_offset: 4
 lmm_pool: archive
 lmm_objects:
 - 0: { l_ost_idx: 4, l_fid: [0x100040000:0x6:0x0] }
Writing some data into the mirrored file
 /mnt/testfs/file1:
yes | dd of=/mnt/testfs/file1 bs=1M count=2
2+0 records in
2+0 records out
2097152 bytes (2.1 MB) copied, 0.0320613 s, 65.4 MB/s

lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 5
 lcm_mirror_count: 3
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init,stale
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

 lcme_id: 196612
 lcme_mirror_id: 3
 lcme_flags: init,stale
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

The above layout information showed that data were written into the
 first component of mirror with ID 1, and mirrors with
 ID 2 and 3 were marked with
 “stale” flag.
Resynchronizing the stale mirror with ID 2 for
 the mirrored file /mnt/testfs/file1:
lfs mirror resync --only 2 /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 7
 lcm_mirror_count: 3
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

 lcme_id: 196612
 lcme_mirror_id: 3
 lcme_flags: init,stale
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

The above layout information showed that after resynchronizing, the
 “stale” flag was removed from mirror with ID 2.
Resynchronizing all of the stale mirrors for the mirrored file
 /mnt/testfs/file1:
lfs mirror resync /mnt/testfs/file1
lfs getstripe /mnt/testfs/file1
/mnt/testfs/file1
 lcm_layout_gen: 9
 lcm_mirror_count: 3
 lcm_entry_count: 4
 lcme_id: 65537
 lcme_mirror_id: 1
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: 4194304

 lcme_id: 65538
 lcme_mirror_id: 1
 lcme_flags: 0
 lcme_extent.e_start: 4194304
 lcme_extent.e_end: EOF

 lcme_id: 131075
 lcme_mirror_id: 2
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

 lcme_id: 196612
 lcme_mirror_id: 3
 lcme_flags: init
 lcme_extent.e_start: 0
 lcme_extent.e_end: EOF

The above layout information showed that after resynchronizing, none
 of the mirrors were marked as stale.

22.2.5. Verifying Mirrored File(s)

Command:
lfs mirror verify [--only <mirror_id,mirror_id2[,...]>]
[--verbose|-v] <mirrored_file> [<mirrored_file2> ...]
The above command will verify that each SYNC mirror (contains
 up-to-date data) of a mirrored file, specified by
 mirrored_file, has exactly the same data. It
 supports specifying multiple mirrored files in one command line.
This is a scrub tool that should be run on regular basis to make
 sure that mirrored files are not corrupted. The command won't repair the
 file if it turns out to be corrupted. Usually, an administrator should
 check the file content from each mirror and decide which one is correct
 and then invoke lfs mirror resync to repair it
 manually.
	Option	Description
	--only <mirror_id,mirror_id2[,...]>	Indicates which mirrors specified by
 mirror_ids need to be verified. The
 mirror_id is the unique numerical
 identifier for a mirror. Multiple
 mirror_ids are separated by comma.

 Note: At least two mirror_ids
 are required. This option cannot be used when multiple
 mirrored files are specified.

	--verbose|-v	Indicates the command will print where the differences are
 if the data do not match. Otherwise, the command will just
 return an error in that case. This option can be repeated for
 multiple times to print more information.

Note:
Mirror components that have “stale” or “offline” flags will be
 skipped and not verified.
Examples:
The following command verifies that each mirror of a mirrored file
 contains exactly the same data:
lfs mirror verify /mnt/testfs/file1
The following command has the -v option specified
 to print where the differences are if the data does not match:
lfs mirror verify -vvv /mnt/testfs/file2
Chunks to be verified in /mnt/testfs/file2:
[0, 0x200000) [1, 2, 3, 4] 4
[0x200000, 0x400000) [1, 2, 3, 4] 4
[0x400000, 0x600000) [1, 2, 3, 4] 4
[0x600000, 0x800000) [1, 2, 3, 4] 4
[0x800000, 0xa00000) [1, 2, 3, 4] 4
[0xa00000, 0x1000000) [1, 2, 3, 4] 4
[0x1000000, 0xffffffffffffffff) [1, 2, 3, 4] 4

Verifying chunk [0, 0x200000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0, 0x200000):
Mirror 1: 0x207b02f1
Mirror 2: 0x207b02f1
Mirror 3: 0x207b02f1
Mirror 4: 0x207b02f1

Verifying chunk [0, 0x200000) on mirror: 1 2 3 4 PASS

Verifying chunk [0x200000, 0x400000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x200000, 0x400000):
Mirror 1: 0x207b02f1
Mirror 2: 0x207b02f1
Mirror 3: 0x207b02f1
Mirror 4: 0x207b02f1

Verifying chunk [0x200000, 0x400000) on mirror: 1 2 3 4 PASS

Verifying chunk [0x400000, 0x600000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x400000, 0x600000):
Mirror 1: 0x42571b66
Mirror 2: 0x42571b66
Mirror 3: 0x42571b66
Mirror 4: 0xabdaf92

lfs mirror verify: chunk [0x400000, 0x600000) has different
checksum value on mirror 1 and mirror 4.
Verifying chunk [0x600000, 0x800000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x600000, 0x800000):
Mirror 1: 0x1f8ad0d8
Mirror 2: 0x1f8ad0d8
Mirror 3: 0x1f8ad0d8
Mirror 4: 0x18975bf9

lfs mirror verify: chunk [0x600000, 0x800000) has different
checksum value on mirror 1 and mirror 4.
Verifying chunk [0x800000, 0xa00000) on mirror: 1 2 3 4
CRC-32 checksum value for chunk [0x800000, 0xa00000):
Mirror 1: 0x69c17478
Mirror 2: 0x69c17478
Mirror 3: 0x69c17478
Mirror 4: 0x69c17478

Verifying chunk [0x800000, 0xa00000) on mirror: 1 2 3 4 PASS

lfs mirror verify: '/mnt/testfs/file2' chunk [0xa00000, 0x1000000]
exceeds file size 0xa00000: skipped
The following command uses the --only option to
 only verify the specified mirrors:
lfs mirror verify -v --only 1,4 /mnt/testfs/file2
CRC-32 checksum value for chunk [0, 0x200000):
Mirror 1: 0x207b02f1
Mirror 4: 0x207b02f1

CRC-32 checksum value for chunk [0x200000, 0x400000):
Mirror 1: 0x207b02f1
Mirror 4: 0x207b02f1

CRC-32 checksum value for chunk [0x400000, 0x600000):
Mirror 1: 0x42571b66
Mirror 4: 0xabdaf92

lfs mirror verify: chunk [0x400000, 0x600000) has different
checksum value on mirror 1 and mirror 4.
CRC-32 checksum value for chunk [0x600000, 0x800000):
Mirror 1: 0x1f8ad0d8
Mirror 4: 0x18975bf9

lfs mirror verify: chunk [0x600000, 0x800000) has different
checksum value on mirror 1 and mirror 4.
CRC-32 checksum value for chunk [0x800000, 0xa00000):
Mirror 1: 0x69c17478
Mirror 4: 0x69c17478

lfs mirror verify: '/mnt/testfs/file2' chunk [0xa00000, 0x1000000]
exceeds file size 0xa00000: skipped

22.2.6. Finding Mirrored File(s)

The lfs find command is used to list files and
 directories with specific attributes. The following two attribute
 parameters are specific to a mirrored file or directory:
lfs find <directory|filename ...>
 [[!] --mirror-count|-N [+-]n]
 [[!] --mirror-state <[^]state>]
	Option	Description
	--mirror-count|-N [+-]n	Indicates mirror count.
	--mirror-state <[^]state>	
 Indicates mirrored file state.

 If ^state is used, print only
 files not matching state. Only one
 state can be specified.

 Valid state names are:

 ro – indicates the mirrored file is in
 read-only state. All of the mirrors contain the up-to-date
 data.

 wp – indicates the mirrored file is in
 a state of being written.

 sp – indicates the mirrored file is in
 a state of being resynchronized.

Note:
Specifying ! before an option negates its meaning
 (files NOT matching the parameter). Using + before a
 numeric value means 'more than n', while - before a
 numeric value means 'less than n'. If neither is used, it means
 'equal to n', within the bounds of the unit specified (if any).
Examples:
The following command recursively lists all mirrored files that have
 more than 2 mirrors under directory /mnt/testfs:

lfs find --mirror-count +2 --type f /mnt/testfs
The following command recursively lists all out-of-sync mirrored
 files under directory /mnt/testfs:
lfs find --mirror-state=^ro --type f /mnt/testfs

22.3. Interoperability

Introduced in Lustre release 2.11.0, the FLR feature is based on the
 Section 19.5, “Progressive File Layout(PFL)” feature introduced in Lustre 2.10.0
For Lustre release 2.9 and older clients, which do not understand the
 PFL layout, they cannot access and open mirrored files created in the
 Lustre 2.11 filesystem.
The following example shows the errors returned by accessing and
 opening a mirrored file (created in Lustre 2.11 filesystem) on a Lustre
 2.9 client:
ls /mnt/testfs/mirrored_file
ls: cannot access /mnt/testfs/mirrored_file: Invalid argument

cat /mnt/testfs/mirrored_file
cat: /mnt/testfs/mirrored_file: Operation not supported
For Lustre release 2.10 clients, which understand the PFL layout, but
 do not understand a mirrored layout, they can access mirrored files
 created in Lustre 2.11 filesystem, however, they cannot open them. This is
 because the Lustre 2.10 clients do not verify overlapping components so
 they would read and write mirrored files just as if they were normal PFL
 files, which will cause a problem where synced mirrors actually contain
 different data.
The following example shows the results returned by accessing and
 opening a mirrored file (created in Lustre 2.11 filesystem) on a Lustre
 2.10 client:
ls /mnt/testfs/mirrored_file
/mnt/testfs/mirrored_file

cat /mnt/testfs/mirrored_file
cat: /mnt/testfs/mirrored_file: Operation not supported

Chapter 23. Managing the File System and
 I/O

23.1.

 Handling Full OSTs

Sometimes a Lustre file system becomes unbalanced, often due to
 incorrectly-specified stripe settings, or when very large files are created
 that are not striped over all of the OSTs. Lustre will automatically avoid
 allocating new files on OSTs that are full. If an OST is completely full and
 more data is written to files already located on that OST, an error occurs.
 The procedures below describe how to handle a full OST.
The MDS will normally handle space balancing automatically at file
 creation time, and this procedure is normally not needed, but manual data
 migration may be desirable in some cases (e.g. creating very large files
 that would consume more than the total free space of the full OSTs).
23.1.1.
 Checking OST Space Usage

The example below shows an unbalanced file system:

client# lfs df -h
UUID bytes Used Available \
Use% Mounted on
testfs-MDT0000_UUID 4.4G 214.5M 3.9G \
4% /mnt/testfs[MDT:0]
testfs-OST0000_UUID 2.0G 751.3M 1.1G \
37% /mnt/testfs[OST:0]
testfs-OST0001_UUID 2.0G 755.3M 1.1G \
37% /mnt/testfs[OST:1]
testfs-OST0002_UUID 2.0G 1.7G 155.1M \
86% /mnt/testfs[OST:2] ****
testfs-OST0003_UUID 2.0G 751.3M 1.1G \
37% /mnt/testfs[OST:3]
testfs-OST0004_UUID 2.0G 747.3M 1.1G \
37% /mnt/testfs[OST:4]
testfs-OST0005_UUID 2.0G 743.3M 1.1G \
36% /mnt/testfs[OST:5]

filesystem summary: 11.8G 5.4G 5.8G \
45% /mnt/testfs

In this case, OST0002 is almost full and when an attempt is made to
 write additional information to the file system (even with uniform
 striping over all the OSTs), the write command fails as follows:

client# lfs setstripe /mnt/testfs 4M 0 -1
client# dd if=/dev/zero of=/mnt/testfs/test_3 bs=10M count=100
dd: writing '/mnt/testfs/test_3': No space left on device
98+0 records in
97+0 records out
1017192448 bytes (1.0 GB) copied, 23.2411 seconds, 43.8 MB/s

23.1.2.
 Disabling creates on a Full OST

To avoid running out of space in the file system, if the OST usage
 is imbalanced and one or more OSTs are close to being full while there
 are others that have a lot of space, the MDS will typically avoid file
 creation on the full OST(s) automatically. The full OSTs may optionally
 be deactivated manually on the MDS to ensure the MDS will not allocate
 new objects there.
	Log into the MDS server and use the lctl
	 command to stop new object creation on the full OST(s):

mds# lctl set_param osp.fsname-OSTnnnn*.max_create_count=0

When new files are created in the file system, they will only use
 the remaining OSTs. Either manual space rebalancing can be done by
 migrating data to other OSTs, as shown in the next section, or normal
 file deletion and creation can passively rebalance the space usage.

23.1.3.

 Migrating Data within a File System

If there is a need to move the file data from the current
 OST(s) to new OST(s), the data must be migrated (copied)
 to the new location. The simplest way to do this is to use the
 lfs_migrate command, as described in
 Section 14.8, “
Adding a New OST to a Lustre File System”.

23.1.4.

 Returning an Inactive OST Back Online

Once the full OST(s) no longer are severely imbalanced, due
 to either active or passive data redistribution, they should be
 reactivated so they will again have new files allocated on them.

[mds]# lctl set_param osp.testfs-OST0002.max_create_count=20000

23.1.5. Migrating Metadata within a Filesystem

Introduced in Lustre 2.823.1.5.1. Whole Directory Migration

Lustre software version 2.8 includes a feature
 to migrate metadata (directories and inodes therein) between MDTs.
 This migration can only be performed on whole directories. Striped
 directories are not supported until Lustre 2.12. For example, to
 migrate the contents of the /testfs/remotedir
 directory from the MDT where it currently is located to MDT0000 to
 allow that MDT to be removed, the sequence of commands is as follows:

$ cd /testfs
$ lfs getdirstripe -m ./remotedir which MDT is dir on?
1
$ touch ./remotedir/file.{1,2,3}.txtcreate test files
$ lfs getstripe -m ./remotedir/file.*.txtcheck files are on MDT0001
1
1
1
$ lfs migrate -m 0 ./remotedir migrate testremote to MDT0000
$ lfs getdirstripe -m ./remotedir which MDT is dir on now?
0
$ lfs getstripe -m ./remotedir/file.*.txtcheck files are on MDT0000
0
0
0
For more information, see man lfs-migrate.

Warning
During migration each file receives a new identifier
 (FID). As a consequence, the file will report a new inode number to
 userspace applications. Some system tools (for example, backup and
 archiving tools, NFS, Samba) that identify files by inode number may
 consider the migrated files to be new, even though the contents are
 unchanged. If a Lustre system is re-exporting to NFS, the migrated
 files may become inaccessible during and after migration if the
 client or server are caching a stale file handle with the old FID.
 Restarting the NFS service will flush the local file handle cache,
 but clients may also need to be restarted as they may cache stale
 file handles as well.

Introduced in Lustre 2.1223.1.5.2. Striped Directory Migration

Lustre 2.8 included a feature to migrate metadata (directories
 and inodes therein) between MDTs, however it did not support migration
 of striped directories, or changing the stripe count of an existing
 directory. Lustre 2.12 adds support for migrating and restriping
 directories. The lfs migrate -m command can only
 only be performed on whole directories, though it will migrate both
 the specified directory and its sub-entries recursively.
 For example, to migrate the contents of a large directory
 /testfs/largedir from its current location on
 MDT0000 to MDT0001 and MDT0003, run the following command:
$ lfs migrate -m 1,3 /testfs/largedir
Metadata migration will migrate file dirent and inode to other
 MDTs, but it won't touch file data. During migration, directory and
 its sub-files can be accessed like normal ones, though the same
 warning above applies to tools that depend on the file inode number.
 Migration may fail for various reasons such as MDS restart, or disk
 full. In those cases, some of the sub-files may have been migrated to
 the new MDTs, while others are still on the original MDT. The files
 can be accessed normally. The same lfs migrate -m
 command should be executed again when these issues are fixed to finish
 this migration. However, you cannot abort a failed migration, or
 migrate to different MDTs from previous migration command.

23.2.

 Creating and Managing OST Pools

The OST pools feature enables users to group OSTs together to make
 object placement more flexible. A 'pool' is the name associated with an
 arbitrary subset of OSTs in a Lustre cluster.
OST pools follow these rules:
	An OST can be a member of multiple pools.

	No ordering of OSTs in a pool is defined or implied.

	Stripe allocation within a pool follows the same rules as the
 normal stripe allocator.

	OST membership in a pool is flexible, and can change over
 time.

When an OST pool is defined, it can be used to allocate files. When
 file or directory striping is set to a pool, only OSTs in the pool are
 candidates for striping. If a stripe_index is specified which refers to an
 OST that is not a member of the pool, an error is returned.
OST pools are used only at file creation. If the definition of a pool
 changes (an OST is added or removed or the pool is destroyed),
 already-created files are not affected.
Note
An error (
 EINVAL) results if you create a file using an empty
 pool.

Note
If a directory has pool striping set and the pool is subsequently
 removed, the new files created in this directory have the (non-pool)
 default striping pattern for that directory applied and no error is
 returned.

23.2.1. Working with OST Pools

OST pools are defined in the configuration log on the MGS. Use the
 lctl command to:
	Create/destroy a pool

	Add/remove OSTs in a pool

	List pools and OSTs in a specific pool

The lctl command MUST be run on the MGS. Another requirement for
 managing OST pools is to either have the MDT and MGS on the same node or
 have a Lustre client mounted on the MGS node, if it is separate from the
 MDS. This is needed to validate the pool commands being run are
 correct.
Caution
Running the
 writeconf command on the MDS erases all pools
 information (as well as any other parameters set using
 lctl conf_param). We recommend that the pools
 definitions (and
 conf_param settings) be executed using a script, so
 they can be reproduced easily after a
 writeconf is performed.

To create a new pool, run:

mgs# lctl pool_new
fsname.
poolname

Note
The pool name is an ASCII string up to 15 characters.

To add the named OST to a pool, run:

mgs# lctl pool_add
fsname.
poolname
ost_list

Where:
	

 ost_listis
 fsname-OST
 index_range

	

 index_rangeis
 ost_index_start-
 ost_index_end[,index_range] or

 ost_index_start-
 ost_index_end/step

If the leading

 fsname
 and/or ending
 _UUID are missing, they are automatically added.
For example, to add even-numbered OSTs to
 pool1 on file system
 testfs, run a single command (
 pool_add) to add many OSTs to the pool at one
 time:

lctl pool_add testfs.pool1 OST[0-10/2]

Note
Each time an OST is added to a pool, a new
 llog configuration record is created. For
 convenience, you can run a single command.

To remove a named OST from a pool, run:

mgs# lctl pool_remove
fsname.
poolname
ost_list

To destroy a pool, run:

mgs# lctl pool_destroy
fsname.
poolname

Note
All OSTs must be removed from a pool before it can be
 destroyed.

To list pools in the named file system, run:

mgs# lctl pool_list
fsname|pathname

To list OSTs in a named pool, run:

lctl pool_list
fsname.
poolname

23.2.1.1. Using the lfs Command with OST Pools

Several lfs commands can be run with OST pools. Use the
 lfs setstripe command to associate a directory with
 an OST pool. This causes all new regular files and directories in the
 directory to be created in the pool. The lfs command can be used to
 list pools in a file system and OSTs in a named pool.
To associate a directory with a pool, so all new files and
 directories will be created in the pool, run:

client# lfs setstripe --pool|-p pool_name
filename|dirname

To set striping patterns, run:

client# lfs setstripe [--size|-s stripe_size] [--offset|-o start_ost]
 [--count|-c stripe_count] [--pool|-p pool_name]

dir|filename

Note
If you specify striping with an invalid pool name, because the
 pool does not exist or the pool name was mistyped,
 lfs setstripe returns an error. Run
 lfs pool_list to make sure the pool exists and the
 pool name is entered correctly.

Note
The
 --pool option for lfs setstripe is compatible with
 other modifiers. For example, you can set striping on a directory to
 use an explicit starting index.

23.2.2.
 Tips for Using OST Pools

Here are several suggestions for using OST pools.
	A directory or file can be given an extended attribute (EA),
 that restricts striping to a pool.

	Pools can be used to group OSTs with the same technology or
 performance (slower or faster), or that are preferred for certain
 jobs. Examples are SATA OSTs versus SAS OSTs or remote OSTs versus
 local OSTs.

	A file created in an OST pool tracks the pool by keeping the
 pool name in the file LOV EA.

23.3.
 Adding an OST to a Lustre File System

To add an OST to existing Lustre file system:
	Add a new OST by passing on the following commands, run:

oss# mkfs.lustre --fsname=testfs --mgsnode=mds16@tcp0 --ost --index=12 /dev/sda
oss# mkdir -p /mnt/testfs/ost12
oss# mount -t lustre /dev/sda /mnt/testfs/ost12

	Migrate the data (possibly).
The file system is quite unbalanced when new empty OSTs are
 added. New file creations are automatically balanced. If this is a
 scratch file system or files are pruned at a regular interval, then no
 further work may be needed. Files existing prior to the expansion can
 be rebalanced with an in-place copy, which can be done with a simple
 script.
The basic method is to copy existing files to a temporary file,
 then move the temp file over the old one. This should not be attempted
 with files which are currently being written to by users or
 applications. This operation redistributes the stripes over the entire
 set of OSTs.
A very clever migration script would do the following:
	Examine the current distribution of data.

	Calculate how much data should move from each full OST to the
 empty ones.

	Search for files on a given full OST (using
 lfs getstripe).

	Force the new destination OST (using
 lfs setstripe).

	Copy only enough files to address the imbalance.

If a Lustre file system administrator wants to explore this approach
 further, per-OST disk-usage statistics can be found under
 /proc/fs/lustre/osc/*/rpc_stats

23.4.
 Performing Direct I/O

The Lustre software supports the
 O_DIRECT flag to open.
Applications using the
 read() and
 write() calls must supply buffers aligned on a page
 boundary (usually 4 K). If the alignment is not correct, the call returns
 -EINVAL. Direct I/O may help performance in cases where
 the client is doing a large amount of I/O and is CPU-bound (CPU utilization
 100%).
23.4.1. Making File System Objects Immutable

An immutable file or directory is one that cannot be modified,
 renamed or removed. To do this:

chattr +i
file

To remove this flag, use
 chattr -i

23.5. Other I/O Options

This section describes other I/O options, including checksums, and
 the ptlrpcd thread pool.
23.5.1. Lustre Checksums

To guard against network data corruption, a Lustre client can
 perform two types of data checksums: in-memory (for data in client
 memory) and wire (for data sent over the network). For each checksum
 type, a 32-bit checksum of the data read or written on both the client
 and server is computed, to ensure that the data has not been corrupted in
 transit over the network. The
 ldiskfs backing file system does NOT do any persistent
 checksumming, so it does not detect corruption of data in the OST file
 system.
The checksumming feature is enabled, by default, on individual
 client nodes. If the client or OST detects a checksum mismatch, then an
 error is logged in the syslog of the form:

LustreError: BAD WRITE CHECKSUM: changed in transit before arrival at OST: \
from 192.168.1.1@tcp inum 8991479/2386814769 object 1127239/0 extent [10240\
0-106495]

If this happens, the client will re-read or re-write the affected
 data up to five times to get a good copy of the data over the network. If
 it is still not possible, then an I/O error is returned to the
 application.
To enable both types of checksums (in-memory and wire), run:

lctl set_param llite.*.checksum_pages=1

To disable both types of checksums (in-memory and wire),
 run:

lctl set_param llite.*.checksum_pages=0

To check the status of a wire checksum, run:

lctl get_param osc.*.checksums

23.5.1.1. Changing Checksum Algorithms

By default, the Lustre software uses the adler32 checksum
 algorithm, because it is robust and has a lower impact on performance
 than crc32. The Lustre file system administrator can change the
 checksum algorithm via
 lctl get_param, depending on what is supported in
 the kernel.
To check which checksum algorithm is being used by the Lustre
 software, run:

$ lctl get_param osc.*.checksum_type

To change the wire checksum algorithm, run:

$ lctl set_param osc.*.checksum_type=
algorithm

Note
The in-memory checksum always uses the adler32 algorithm, if
 available, and only falls back to crc32 if adler32 cannot be
 used.

In the following example, the
 lctl get_param command is used to determine that the
 Lustre software is using the adler32 checksum algorithm. Then the
 lctl set_param command is used to change the checksum
 algorithm to crc32. A second
 lctl get_param command confirms that the crc32
 checksum algorithm is now in use.

$ lctl get_param osc.*.checksum_type
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=crc32 [adler]
$ lctl set_param osc.*.checksum_type=crc32
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=crc32
$ lctl get_param osc.*.checksum_type
osc.testfs-OST0000-osc-ffff81012b2c48e0.checksum_type=[crc32] adler

23.5.2. Ptlrpc Thread Pool

Releases prior to Lustre software release 2.2 used two portal RPC
 daemons for each client/server pair. One daemon handled all synchronous
 IO requests, and the second daemon handled all asynchronous (non-IO)
 RPCs. The increasing use of large SMP nodes for Lustre servers exposed
 some scaling issues. The lack of threads for large SMP nodes resulted in
 cases where a single CPU would be 100% utilized and other CPUs would be
 relativity idle. This is especially noticeable when a single client
 traverses a large directory.
Lustre software release 2.2.x implements a ptlrpc thread pool, so
 that multiple threads can be created to serve asynchronous RPC requests.
 The number of threads spawned is controlled at module load time using
 module options. By default one thread is spawned per CPU, with a minimum
 of 2 threads spawned irrespective of module options.
One of the issues with thread operations is the cost of moving a
 thread context from one CPU to another with the resulting loss of CPU
 cache warmth. To reduce this cost, ptlrpc threads can be bound to a CPU.
 However, if the CPUs are busy, a bound thread may not be able to respond
 quickly, as the bound CPU may be busy with other tasks and the thread
 must wait to schedule.
Because of these considerations, the pool of ptlrpc threads can be
 a mixture of bound and unbound threads. The system operator can balance
 the thread mixture based on system size and workload.
23.5.2.1. ptlrpcd parameters

These parameters should be set in
 /etc/modprobe.conf or in the
 etc/modprobe.d directory, as options for the ptlrpc
 module.

options ptlrpcd max_ptlrpcds=XXX

Sets the number of ptlrpcd threads created at module load time.
 The default if not specified is one thread per CPU, including
 hyper-threaded CPUs. The lower bound is 2 (old prlrpcd behaviour)

options ptlrpcd ptlrpcd_bind_policy=[1-4]

Controls the binding of threads to CPUs. There are four policy
 options.
	

 PDB_POLICY_NONE(ptlrpcd_bind_policy=1) All threads are
 unbound.

	

 PDB_POLICY_FULL(ptlrpcd_bind_policy=2) All threads
 attempt to bind to a CPU.

	

 PDB_POLICY_PAIR(ptlrpcd_bind_policy=3) This is the
 default policy. Threads are allocated as a bound/unbound pair. Each
 thread (bound or free) has a partner thread. The partnering is used
 by the ptlrpcd load policy, which determines how threads are
 allocated to CPUs.

	

 PDB_POLICY_NEIGHBOR(ptlrpcd_bind_policy=4) Threads are
 allocated as a bound/unbound pair. Each thread (bound or free) has
 two partner threads.

Chapter 24. Lustre File System Failover and Multiple-Mount Protection

This chapter describes the multiple-mount protection (MMP) feature, which protects the file
 system from being mounted simultaneously to more than one node. It includes the following
 sections:
	Section 24.1, “
 Overview of Multiple-Mount Protection”

	Section 24.2, “Working with Multiple-Mount Protection”

Note
For information about configuring a Lustre file system for failover, see Chapter 11, Configuring Failover in a Lustre File System

24.1.
 Overview of Multiple-Mount Protection

The multiple-mount protection (MMP) feature protects the Lustre file system from being
 mounted simultaneously to more than one node. This feature is important in a shared storage
 environment (for example, when a failover pair of OSSs share a LUN).
The backend file system, ldiskfs, supports the MMP mechanism. A block
 in the file system is updated by a kmmpd daemon at one second intervals,
 and a sequence number is written in this block. If the file system is cleanly unmounted, then
 a special "clean" sequence is written to this block. When mounting the file system,
 ldiskfs checks if the MMP block has a clean sequence or not.
Even if the MMP block has a clean sequence, ldiskfs waits for some interval to guard against the following situations:
	 If I/O traffic is heavy, it may take longer for the MMP block to be updated.

	 If another node is trying to mount the same file system, a "race" condition may occur.

With MMP enabled, mounting a clean file system takes at least 10 seconds. If the file system was not cleanly unmounted, then the file system mount may require additional time.
Note
The MMP feature is only supported on Linux kernel versions newer than 2.6.9.

24.2. Working with Multiple-Mount Protection

On a new Lustre file system, MMP is automatically enabled by
 mkfs.lustre at format time if failover is being used and the kernel and
 e2fsprogs version support it. On an existing file system, a Lustre file
 system administrator can manually enable MMP when the file system is unmounted.
Use the following commands to determine whether MMP is running in the Lustre file system
 and to enable or disable the MMP feature.
To determine if MMP is enabled, run:
dumpe2fs -h /dev/block_device | grep mmp
Here is a sample command:
dumpe2fs -h /dev/sdc | grep mmp
Filesystem features: has_journal ext_attr resize_inode dir_index
filetype extent mmp sparse_super large_file uninit_bg
To manually disable MMP, run:
tune2fs -O ^mmp /dev/block_device
To manually enable MMP, run:
tune2fs -O mmp /dev/block_device
When MMP is enabled, if ldiskfs detects multiple mount attempts after
 the file system is mounted, it blocks these later mount attempts and reports the time when the
 MMP block was last updated, the node name, and the device name of the node where the file
 system is currently mounted.

Chapter 25. Configuring and Managing
 Quotas

25.1.
 Working with Quotas

Quotas allow a system administrator to limit the amount of disk
 space a user, group, or project can use. Quotas are set by root, and can
 be specified for individual users, groups, and/or projects. Before a file
 is written to a partition where quotas are set, the quota of the creator's
 group is checked. If a quota exists, then the file size counts towards
 the group's quota. If no quota exists, then the owner's user quota is
 checked before the file is written. Similarly, inode usage for specific
 functions can be controlled if a user over-uses the allocated space.
Lustre quota enforcement differs from standard Linux quota
 enforcement in several ways:
	Quotas are administered via the
 lfs and
 lctl commands (post-mount).

	The quota feature in Lustre software is distributed
 throughout the system (as the Lustre file system is a distributed file
 system). Because of this, quota setup and behavior on Lustre is
 different from local disk quotas in the following ways:
	No single point of administration: some commands must be
 executed on the MGS, other commands on the MDSs and OSSs, and still
 other commands on the client.

	Granularity: a local quota is typically specified for
 kilobyte resolution, Lustre uses one megabyte as the smallest quota
 resolution.

	Accuracy: quota information is distributed throughout
the file system and can only be accurately calculated with a completely
quite file system.

	Quotas are allocated and consumed in a quantized fashion.

	Client does not set the
 usrquota or
 grpquota options to mount. As of Lustre software
 release 2.4, space accounting is always enabled by default and quota
 enforcement can be enabled/disabled on a per-file system basis with
 lctl conf_param. It is worth noting that both
 lfs quotaon and
 quota_type are deprecated as of Lustre software
 release 2.4.0.

Caution
Although a quota feature is available in the Lustre software, root
 quotas are NOT enforced.

 lfs setquota -u root (limits are not enforced)

 lfs quota -u root (usage includes internal Lustre data
 that is dynamic in size and does not accurately reflect mount point
 visible block and inode usage).

25.2.
 Enabling Disk Quotas

The design of quotas on Lustre has management and enforcement
 separated from resource usage and accounting. Lustre software is
 responsible for management and enforcement. The back-end file
 system is responsible for resource usage and accounting. Because of
 this, it is necessary to begin enabling quotas by enabling quotas on the
 back-end disk system. Because quota setup is dependent on the Lustre
 software version in use, you may first need to run
 lctl get_param version to identify
 which version? you are currently using.

Introduced in Lustre 2.425.2.1. Enabling Disk Quotas (Lustre Software Release 2.4 and
 later)

Caution
Quota setup is orchestrated by the MGS and all setup
 commands in this section must be run directly on the MGS.
 Support for project quotas specifically requires Lustre Release 2.10 or
 later. A patched server may be required, depending
 on the kernel version and backend filesystem type:
	

 Configuration

 	

 Patched Server Required?

	
 ldiskfs with kernel version < 4.5

	Yes

	
 ldiskfs with kernel version >= 4.5

	No

	
 zfs version >=0.8 with kernel
 version < 4.5

	Yes

	
 zfs version >=0.8 with kernel
 version > 4.5

	No

*Note: Project quotas are not supported on zfs versions earlier
 than 0.8.

Once setup, verification of the quota state must be performed on the
 MDT. Although quota enforcement is managed by the Lustre software, each
 OSD implementation relies on the back-end file system to maintain
 per-user/group/project block and inode usage. Hence, differences exist
 when setting up quotas with ldiskfs or ZFS back-ends:
	For ldiskfs backends,
 mkfs.lustre now creates empty quota files and
 enables the QUOTA feature flag in the superblock which turns quota
 accounting on at mount time automatically. e2fsck was also modified
 to fix the quota files when the QUOTA feature flag is present. The
	 project quota feature is disabled by default, and
 tune2fs needs to be run to enable every target
 manually.

	For ZFS backend, the project quota feature is not
 supported on zfs versions less than 0.8.0. Accounting ZAPs
 are created and maintained by the ZFS file system itself. While ZFS
 tracks per-user and group block usage, it does not handle inode
 accounting for ZFS versions prior to zfs-0.7.0. The ZFS OSD previously
 implemented its own support for inode tracking. Two options are
 available:
	The ZFS OSD can estimate the number of inodes in-use based
 on the number of blocks used by a given user or group. This mode
 can be enabled by running the following command on the server
 running the target:
 lctl set_param
 osd-zfs.${FSNAME}-${TARGETNAME}.quota_iused_estimate=1.

	Similarly to block accounting, dedicated ZAPs are also
 created the ZFS OSD to maintain per-user and group inode usage.
 This is the default mode which corresponds to
 quota_iused_estimate set to 0.

Note
Lustre file systems formatted with a Lustre release prior to 2.4.0
 can be still safely upgraded to release 2.4.0, but will not have
 functional space usage report until
 tunefs.lustre --quota is run against all targets. This
 command sets the QUOTA feature flag in the superblock and runs e2fsck (as
 a result, the target must be offline) to build the per-UID/GID disk usage
 database.
Introduced in Lustre 2.10Lustre filesystems formatted with a Lustre release
 prior to 2.10 can be still safely upgraded to release 2.10, but will not
 have project quota usage reporting functional until
 tune2fs -O project is run against all ldiskfs backend
 targets. This command sets the PROJECT feature flag in the superblock and
 runs e2fsck (as a result, the target must be offline). See
 Section 25.5, “
 Quotas and Version Interoperability” for further important
 considerations.

Caution
Lustre software release 2.4 and later requires a version of
 e2fsprogs that supports quota (i.e. newer or equal to 1.42.13.wc5,
	1.42.13.wc6 or newer is needed for project quota support) to be
	installed on the server nodes using ldiskfs backend (e2fsprogs is not
	needed with ZFS backend). In general, we recommend to use the latest
	e2fsprogs version available on
	
 http://downloads.whamcloud.com/public/e2fsprogs/.
The ldiskfs OSD relies on the standard Linux quota to maintain
 accounting information on disk. As a consequence, the Linux kernel
 running on the Lustre servers using ldiskfs backend must have
 CONFIG_QUOTA,
 CONFIG_QUOTACTL and
 CONFIG_QFMT_V2 enabled.

As of Lustre software release 2.4.0, quota enforcement is thus
 turned on/off independently of space accounting which is always enabled.
 lfs quota
 on|off as well as the per-target
 quota_type parameter are deprecated in favor of a
 single per-file system quota parameter controlling inode/block quota
 enforcement. Like all permanent parameters, this quota parameter can be
 set via
 lctl conf_param on the MGS via the following
 syntax:

lctl conf_param fsname.quota.ost|mdt=u|g|p|ugp|none

	
 ost -- to configure block quota managed by
 OSTs

	
 mdt -- to configure inode quota managed by
 MDTs

	
 u -- to enable quota enforcement for users
 only

	
 g -- to enable quota enforcement for groups
 only

	
 p -- to enable quota enforcement for projects
 only

	
 ugp -- to enable quota enforcement for all users,
 groups and projects

	
 none -- to disable quota enforcement for all users,
 groups and projects

Examples:
To turn on user, group, and project quotas for block only on
 file system
 testfs1, on the MGS run:
$ lctl conf_param testfs1.quota.ost=ugp

To turn on group quotas for inodes on file system
 testfs2, on the MGS run:
$ lctl conf_param testfs2.quota.mdt=g

To turn off user, group, and project quotas for both inode and block
 on file system
 testfs3, on the MGS run:
$ lctl conf_param testfs3.quota.ost=none

$ lctl conf_param testfs3.quota.mdt=none

25.2.1.1.
	 Quota Verification

Once the quota parameters have been configured, all targets
 which are part of the file system will be automatically notified of the
 new quota settings and enable/disable quota enforcement as needed. The
 per-target enforcement status can still be verified by running the
 following command on the MDS(s):

$ lctl get_param osd-*.*.quota_slave.info
osd-zfs.testfs-MDT0000.quota_slave.info=
target name: testfs-MDT0000
pool ID: 0
type: md
quota enabled: ug
conn to master: setup
user uptodate: glb[1],slv[1],reint[0]
group uptodate: glb[1],slv[1],reint[0]

25.3.
 Quota Administration

Once the file system is up and running, quota limits on blocks
 and inodes can be set for user, group, and project. This is
 controlled entirely from a client via three quota
 parameters:

 Grace period-- The period of time (in
 seconds) within which users are allowed to exceed their soft limit. There
 are six types of grace periods:
	user block soft limit

	user inode soft limit

	group block soft limit

	group inode soft limit

	project block soft limit

	project inode soft limit

The grace period applies to all users. The user block soft limit is
 for all users who are using a blocks quota.

 Soft limit -- The grace timer is started
 once the soft limit is exceeded. At this point, the user/group/project
 can still allocate block/inode. When the grace time expires and if the
 user is still above the soft limit, the soft limit becomes a hard limit
 and the user/group/project can't allocate any new block/inode any more.
 The user/group/project should then delete files to be under the soft limit.
 The soft limit MUST be smaller than the hard limit. If the soft limit is
 not needed, it should be set to zero (0).

 Hard limit -- Block or inode allocation
 will fail with
 EDQUOT(i.e. quota exceeded) when the hard limit is
 reached. The hard limit is the absolute limit. When a grace period is set,
 one can exceed the soft limit within the grace period if under the hard
 limit.
Due to the distributed nature of a Lustre file system and the need to
 maintain performance under load, those quota parameters may not be 100%
 accurate. The quota settings can be manipulated via the
 lfs command, executed on a client, and includes several
 options to work with quotas:
	
 quota -- displays general quota information (disk
 usage and limits)

	
 setquota -- specifies quota limits and tunes the
 grace period. By default, the grace period is one week.

Usage:

lfs quota [-q] [-v] [-h] [-o obd_uuid] [-u|-g|-p uname|uid|gname|gid|projid] /mount_point
lfs quota -t {-u|-g|-p} /mount_point
lfs setquota {-u|--user|-g|--group|-p|--project} username|groupname [-b block-softlimit] \
 [-B block_hardlimit] [-i inode_softlimit] \
 [-I inode_hardlimit] /mount_point

To display general quota information (disk usage and limits) for the
 user running the command and his primary group, run:

$ lfs quota /mnt/testfs

To display general quota information for a specific user ("
 bob" in this example), run:

$ lfs quota -u bob /mnt/testfs

To display general quota information for a specific user ("
 bob" in this example) and detailed quota statistics for
 each MDT and OST, run:

$ lfs quota -u bob -v /mnt/testfs

To display general quota information for a specific project ("
 1" in this example), run:

$ lfs quota -p 1 /mnt/testfs

To display general quota information for a specific group ("
 eng" in this example), run:

$ lfs quota -g eng /mnt/testfs

To limit quota usage for a specific project ID on a specific
 directory ("/mnt/testfs/dir" in this example), run:

$ chattr +P /mnt/testfs/dir
$ chattr -p 1 /mnt/testfs/dir
$ lfs setquota -p 1 -b 307200 -B 309200 -i 10000 -I 11000 /mnt/testfs

Please note that if it is desired to have
 lfs quota -p show the space/inode usage under the
 directory properly (much faster than du), then the
 user/admin needs to use different project IDs for different directories.

To display block and inode grace times for user quotas, run:

$ lfs quota -t -u /mnt/testfs

To set user or group quotas for a specific ID ("bob" in this
 example), run:

$ lfs setquota -u bob -b 307200 -B 309200 -i 10000 -I 11000 /mnt/testfs

In this example, the quota for user "bob" is set to 300 MB
 (309200*1024) and the hard limit is 11,000 files. Therefore, the inode hard
 limit should be 11000.
The quota command displays the quota allocated and consumed by each
 Lustre target. Using the previous
 setquota example, running this
 lfs quota command:

$ lfs quota -u bob -v /mnt/testfs

displays this command output:

Disk quotas for user bob (uid 6000):
Filesystem kbytes quota limit grace files quota limit grace
/mnt/testfs 0 30720 30920 - 0 10000 11000 -
testfs-MDT0000_UUID 0 - 8192 - 0 - 2560 -
testfs-OST0000_UUID 0 - 8192 - 0 - 0 -
testfs-OST0001_UUID 0 - 8192 - 0 - 0 -
Total allocated inode limit: 2560, total allocated block limit: 24576

Global quota limits are stored in dedicated index files (there is one
 such index per quota type) on the quota master target (aka QMT). The QMT
 runs on MDT0000 and exports the global indices via lctl
 get_param. The global indices can thus be dumped via the
 following command:

lctl get_param qmt.testfs-QMT0000.*.glb-*

The format of global indexes depends on the OSD type. The ldiskfs OSD
uses an IAM files while the ZFS OSD creates dedicated ZAPs.
Each slave also stores a copy of this global index locally. When the
 global index is modified on the master, a glimpse callback is issued on the
 global quota lock to notify all slaves that the global index has been
 modified. This glimpse callback includes information about the identifier
 subject to the change. If the global index on the QMT is modified while a
 slave is disconnected, the index version is used to determine whether the
 slave copy of the global index isn't up to date any more. If so, the slave
 fetches the whole index again and updates the local copy. The slave copy of
 the global index can also be accessed via the following command:

lctl get_param osd-*.*.quota_slave.limit*

Note
Prior to 2.4, global quota limits used to be stored in
 administrative quota files using the on-disk format of the linux quota
 file. When upgrading MDT0000 to 2.4, those administrative quota files are
 converted into IAM indexes automatically, conserving existing quota
 limits previously set by the administrator.

25.4.
 Quota Allocation

In a Lustre file system, quota must be properly allocated or users
 may experience unnecessary failures. The file system block quota is divided
 up among the OSTs within the file system. Each OST requests an allocation
 which is increased up to the quota limit. The quota allocation is then
 quantized to reduce the number of
 quota-related request traffic.
The Lustre quota system distributes quotas from the Quota Master
 Target (aka QMT). Only one QMT instance is supported for now and only runs
 on the same node as MDT0000. All OSTs and MDTs set up a Quota Slave Device
 (aka QSD) which connects to the QMT to allocate/release quota space. The
 QSD is setup directly from the OSD layer.
To reduce quota requests, quota space is initially allocated to QSDs
 in very large chunks. How much unused quota space can be hold by a target
 is controlled by the qunit size. When quota space for a given ID is close
 to exhaustion on the QMT, the qunit size is reduced and QSDs are notified
 of the new qunit size value via a glimpse callback. Slaves are then
 responsible for releasing quota space above the new qunit value. The qunit
 size isn't shrunk indefinitely and there is a minimal value of 1MB for
 blocks and 1,024 for inodes. This means that the quota space rebalancing
 process will stop when this minimum value is reached. As a result, quota
 exceeded can be returned while many slaves still have 1MB or 1,024 inodes
 of spare quota space.
If we look at the
 setquota example again, running this
 lfs quota command:

lfs quota -u bob -v /mnt/testfs

displays this command output:

Disk quotas for user bob (uid 500):
Filesystem kbytes quota limit grace files quota limit grace
/mnt/testfs 30720* 30720 30920 6d23h56m44s 10101* 10000 11000
6d23h59m50s
testfs-MDT0000_UUID 0 - 0 - 10101 - 10240
testfs-OST0000_UUID 0 - 1024 - - - -
testfs-OST0001_UUID 30720* - 29896 - - - -
Total allocated inode limit: 10240, total allocated block limit: 30920

The total quota limit of 30,920 is allocated to user bob, which is
 further distributed to two OSTs.
Values appended with '
 *' show that the quota limit has been exceeded, causing
 the following error when trying to write or create a file:

$ cp: writing `/mnt/testfs/foo`: Disk quota exceeded.

Note
It is very important to note that the block quota is consumed per
 OST and the inode quota per MDS. Therefore, when the quota is consumed on
 one OST (resp. MDT), the client may not be able to create files
 regardless of the quota available on other OSTs (resp. MDTs).
Setting the quota limit below the minimal qunit size may prevent
 the user/group from all file creation. It is thus recommended to use
 soft/hard limits which are a multiple of the number of OSTs * the minimal
 qunit size.

To determine the total number of inodes, use
 lfs df -i(and also
 lctl get_param *.*.filestotal). For more information on
 using the
 lfs df -i command and the command output, see
 Section 19.6.1, “Checking File System Free Space”.
Unfortunately, the
 statfs interface does not report the free inode count
 directly, but instead reports the total inode and used inode counts. The
 free inode count is calculated for
 df from (total inodes - used inodes). It is not critical
 to know the total inode count for a file system. Instead, you should know
 (accurately), the free inode count and the used inode count for a file
 system. The Lustre software manipulates the total inode count in order to
 accurately report the other two values.

25.5.
 Quotas and Version Interoperability

The new quota protocol introduced in Lustre software release 2.4.0
 is not compatible with previous
 versions. As a consequence,
 all Lustre servers must be upgraded to release 2.4.0
 for quota to be functional. Quota limits set on the Lustre file
 system prior to the upgrade will be automatically migrated to the new quota
 index format. As for accounting information with ldiskfs backend, they will
 be regenerated by running
 tunefs.lustre --quota against all targets. It is worth
 noting that running
 tunefs.lustre --quota is
 mandatory for all targets formatted with a
 Lustre software release older than release 2.4.0, otherwise quota
 enforcement as well as accounting won't be functional.
Besides, the quota protocol in release 2.4 takes for granted that the
 Lustre client supports the
 OBD_CONNECT_EINPROGRESS connect flag. Clients supporting
 this flag will retry indefinitely when the server returns
 EINPROGRESS in a reply. Here is the list of Lustre client
 version which are compatible with release 2.4:
	Release 2.3-based clients and later

	Release 1.8 clients newer or equal to release 1.8.9-wc1

	Release 2.1 clients newer or equal to release 2.1.4

Introduced in Lustre 2.10To use the project quota functionality introduced in
 Lustre 2.10, all Lustre servers and clients must be
 upgraded to Lustre release 2.10 or later for project quota to work
 correctly. Otherwise, project quota will be inaccessible on
 clients and not be accounted for on OSTs. Furthermore, the
 servers may be required to use a patched kernel,
 for more information see
 Section 25.2.1, “Enabling Disk Quotas (Lustre Software Release 2.4 and
 later)”.

25.6.
 Granted Cache and Quota Limits

In a Lustre file system, granted cache does not respect quota limits.
 In this situation, OSTs grant cache to a Lustre client to accelerate I/O.
 Granting cache causes writes to be successful in OSTs, even if they exceed
 the quota limits, and will overwrite them.
The sequence is:
	A user writes files to the Lustre file system.

	If the Lustre client has enough granted cache, then it returns
 'success' to users and arranges the writes to the OSTs.

	Because Lustre clients have delivered success to users, the OSTs
 cannot fail these writes.

Because of granted cache, writes always overwrite quota limitations.
 For example, if you set a 400 GB quota on user A and use IOR to write for
 user A from a bundle of clients, you will write much more data than 400 GB,
 and cause an out-of-quota error (
 EDQUOT).
Note
The effect of granted cache on quota limits can be mitigated, but
 not eradicated. Reduce the maximum amount of dirty data on the clients
 (minimal value is 1MB):
	
 lctl set_param osc.*.max_dirty_mb=8

25.7.
 Lustre Quota Statistics

The Lustre software includes statistics that monitor quota activity,
 such as the kinds of quota RPCs sent during a specific period, the average
 time to complete the RPCs, etc. These statistics are useful to measure
 performance of a Lustre file system.
Each quota statistic consists of a quota event and
 min_time,
 max_time and
 sum_time values for the event.
	

 Quota Event

 	

 Description

	

 sync_acq_req

 	
 Quota slaves send a acquiring_quota request and wait for
 its return.

	

 sync_rel_req

 	
 Quota slaves send a releasing_quota request and wait for
 its return.

	

 async_acq_req

 	
 Quota slaves send an acquiring_quota request and do not
 wait for its return.

	

 async_rel_req

 	
 Quota slaves send a releasing_quota request and do not wait
 for its return.

	

 wait_for_blk_quota
 (lquota_chkquota)

 	
 Before data is written to OSTs, the OSTs check if the
 remaining block quota is sufficient. This is done in the
 lquota_chkquota function.

	

 wait_for_ino_quota
 (lquota_chkquota)

 	
 Before files are created on the MDS, the MDS checks if the
 remaining inode quota is sufficient. This is done in the
 lquota_chkquota function.

	

 wait_for_blk_quota
 (lquota_pending_commit)

 	
 After blocks are written to OSTs, relative quota
 information is updated. This is done in the lquota_pending_commit
 function.

	

 wait_for_ino_quota
 (lquota_pending_commit)

 	
 After files are created, relative quota information is
 updated. This is done in the lquota_pending_commit
 function.

	

 wait_for_pending_blk_quota_req
 (qctxt_wait_pending_dqacq)

 	
 On the MDS or OSTs, there is one thread sending a quota
 request for a specific UID/GID for block quota at any time. At
 that time, if other threads need to do this too, they should
 wait. This is done in the qctxt_wait_pending_dqacq
 function.

	

 wait_for_pending_ino_quota_req
 (qctxt_wait_pending_dqacq)

 	
 On the MDS, there is one thread sending a quota request for
 a specific UID/GID for inode quota at any time. If other threads
 need to do this too, they should wait. This is done in the
 qctxt_wait_pending_dqacq function.

	

 nowait_for_pending_blk_quota_req
 (qctxt_wait_pending_dqacq)

 	
 On the MDS or OSTs, there is one thread sending a quota
 request for a specific UID/GID for block quota at any time. When
 threads enter qctxt_wait_pending_dqacq, they do not need to wait.
 This is done in the qctxt_wait_pending_dqacq function.

	

 nowait_for_pending_ino_quota_req
 (qctxt_wait_pending_dqacq)

 	
 On the MDS, there is one thread sending a quota request for
 a specific UID/GID for inode quota at any time. When threads
 enter qctxt_wait_pending_dqacq, they do not need to wait. This is
 done in the qctxt_wait_pending_dqacq function.

	

 quota_ctl

 	
 The quota_ctl statistic is generated when lfs
 setquota,
 lfs quota and so on, are issued.

	

 adjust_qunit

 	
 Each time qunit is adjusted, it is counted.

25.7.1. Interpreting Quota Statistics

Quota statistics are an important measure of the performance of a
 Lustre file system. Interpreting these statistics correctly can help you
 diagnose problems with quotas, and may indicate adjustments to improve
 system performance.
For example, if you run this command on the OSTs:

lctl get_param lquota.testfs-OST0000.stats

You will get a result similar to this:

snapshot_time 1219908615.506895 secs.usecs
async_acq_req 1 samples [us] 32 32 32
async_rel_req 1 samples [us] 5 5 5
nowait_for_pending_blk_quota_req(qctxt_wait_pending_dqacq) 1 samples [us] 2\
 2 2
quota_ctl 4 samples [us] 80 3470 4293
adjust_qunit 1 samples [us] 70 70 70
....

In the first line,
 snapshot_time indicates when the statistics were taken.
 The remaining lines list the quota events and their associated
 data.
In the second line, the
 async_acq_req event occurs one time. The
 min_time,
 max_time and
 sum_time statistics for this event are 32, 32 and 32,
 respectively. The unit is microseconds (μs).
In the fifth line, the quota_ctl event occurs four times. The
 min_time,
 max_time and
 sum_time statistics for this event are 80, 3470 and
 4293, respectively. The unit is microseconds (μs).

Chapter 26. Hierarchical Storage Management (HSM)

This chapter describes how to bind Lustre to a Hierarchical Storage Management (HSM) solution.
26.1.
 Introduction

The Lustre file system can bind to a Hierarchical Storage Management (HSM)
solution using a specific set of functions. These functions enable connecting
a Lustre file system to one or more external storage systems, typically HSMs.
With a Lustre file system bound to a HSM solution, the Lustre file system acts
as a high speed cache in front of these slower HSM storage systems.
The Lustre file system integration with HSM provides a mechanism for
files to simultaneously exist in a HSM solution and have a metadata entry in
the Lustre file system that can be examined. Reading, writing or truncating the
file will trigger the file data to be fetched from the HSM storage back into
the Lustre file system.
The process of copying a file into the HSM storage is known as
archive. Once the archive is complete, the Lustre file
data can be deleted (known as release.) The process of
returning data from the HSM storage to the Lustre file system is called
restore. The archive and restore operations require a
Lustre file system component called an Agent.
An Agent is a specially designed Lustre client node that mounts the
Lustre file system in question. On an Agent, a user space program called a
copytool is run to coordinate the archive and restore of files between the
Lustre file system and the HSM solution.
Requests to restore a given file are registered and dispatched by a
facet on the MDT called the Coordinator.

	
Figure 26.1. Overview of the Lustre file system HSM
[image: Overview of the Lustre file system HSM]

26.2.
 Setup

26.2.1.
 Requirements
		

To setup a Lustre/HSM configuration you need:
	a standard Lustre file system (version 2.5.0 and above)

	a minimum of 2 clients, 1 used for your chosen computation task that generates
			useful data, and 1 used as an agent.

Multiple agents can be employed. All the agents need to share access
	to their backend storage. For the POSIX copytool, a POSIX namespace like NFS or
	another Lustre file system is suitable.

26.2.2.
 Coordinator
		

To bind a Lustre file system to a HSM system a coordinator
			must be activated on each of your filesystem MDTs. This can be achieved with the command:
$ lctl set_param mdt.$FSNAME-MDT0000.hsm_control=enabled
mdt.lustre-MDT0000.hsm_control=enabled
To verify that the coordinator is running correctly
$ lctl get_param mdt.$FSNAME-MDT0000.hsm_control
mdt.lustre-MDT0000.hsm_control=enabled

26.2.3.
 Agents
		

Once a coordinator is started, launch the copytool on each agent node to connect to your HSM storage. If your HSM storage has POSIX access this command will be of the form:
lhsmtool_posix --daemon --hsm-root $HSMPATH --archive=1 $LUSTREPATH
The POSIX copytool must be stopped by sending it a TERM signal.

26.3.
 Agents and copytool

Agents are Lustre file system clients running copytool. copytool is a userspace
daemon that transfers data between Lustre and a HSM solution. Because different
HSM solutions use different APIs, copytools can typically only work with a
specific HSM. Only one copytool can be run by an agent node.
The following rule applies regarding copytool instances: a Lustre file
system only supports a single copytool process, per ARCHIVE ID (see below),
per client node. Due to a Lustre software limitation, this constraint is
irrespective of the number of Lustre file systems mounted by the Agent.
Bundled with Lustre tools, the POSIX copytool can work with any HSM or
external storage that exports a POSIX API.
26.3.1.
 Archive ID, multiple backends
		

A Lustre file system can be bound to several different HSM solutions.
Each bound HSM solution is identified by a number referred to as ARCHIVE ID. A
unique value of ARCHIVE ID must be chosen for each bound HSM solution. ARCHIVE
ID must be in the range 1 to 32.
A Lustre file system supports an unlimited number of copytool instances.
You need, at least, one copytool per ARCHIVE ID. When using the POSIX copytool,
this ID is defined using --archive switch.
For example: if a single Lustre file system is bound to 2 different HSMs (A and B,) ARCHIVE ID “1” can be chosen for HSM A and ARCHIVE ID “2” for HSM B. If you start 3 copytool instances for ARCHIVE ID 1, all of them will use Archive ID “1”. The same rule applies for copytool instances dealing with the HSM B, using Archive ID “2”.
When issuing HSM requests, you can use the --archive switch
to choose the backend you want to use. In this example, file foo will be
archived into backend ARCHIVE ID “5”:
$ lfs hsm_archive --archive=5 /mnt/lustre/foo
A default ARCHIVE ID can be defined which will be used when the --archive switch is not specified:
$ lctl set_param -P mdt.lustre-MDT0000.hsm.default_archive_id=5
The ARCHIVE ID of archived files can be checked using lfs
hsm_state command:
$ lfs hsm_state /mnt/lustre/foo
/mnt/lustre/foo: (0x00000009) exists archived, archive_id:5

26.3.2.
 Registered agents
		

A Lustre file system allocates a unique UUID per client mount point, for each
filesystem. Only one copytool can be registered for each Lustre mount point.
As a consequence, the UUID uniquely identifies a copytool, per filesystem.
The currently registered copytool instances (agents UUID) can be retrieved by running the following command, per MDT, on MDS nodes:
$ lctl get_param -n mdt.$FSNAME-MDT0000.hsm.agents
uuid=a19b2416-0930-fc1f-8c58-c985ba5127ad archive_id=1 requests=[current:0 ok:0 errors:0]
The returned fields have the following meaning:
	uuid the client mount used by the corresponding copytool.

	archive_id comma-separated list of ARCHIVE IDs accessible by this copytool.

	requests various statistics on the number of requests processed by this copytool.

26.3.3.
 Timeout
		

One or more copytool instances may experience conditions that
cause them to become unresponsive. To avoid blocking access to the related
files a timeout value is defined for request processing. A copytool must be
able to fully complete a request within this time. The default is 3600 seconds.
		
$ lctl set_param -n mdt.lustre-MDT0000.hsm.active_request_timeout

26.4.
 Requests
		

Data management between a Lustre file system and HSM solutions is driven by requests. There are five types:
	ARCHIVE Copy data from a Lustre file system file into the HSM solution.

	RELEASE Remove file data from the Lustre file system.

	RESTORE Copy back data from the HSM solution into the corresponding Lustre file system file.

	REMOVE Delete the copy of the data from the HSM solution.

	CANCEL Cancel an in-progress or pending request.

Only the RELEASE is performed synchronously and
does not involve the coordinator. Other requests are handled by Coordinators.
Each MDT coordinator is resiliently managing them.
26.4.1.
 Commands
		

Requests are submitted using lfs command:
$ lfs hsm_archive [--archive=ID] FILE1 [FILE2...]
$ lfs hsm_release FILE1 [FILE2...]
$ lfs hsm_restore FILE1 [FILE2...]
$ lfs hsm_remove FILE1 [FILE2...]

Requests are sent to the default ARCHIVE ID unless an ARCHIVE ID is specified with the --archive option (See Section 26.3.1, “
 Archive ID, multiple backends
		”).

26.4.2.
 Automatic restore
		

Released files are automatically restored when a process tries to read or modify them. The corresponding I/O will block waiting for the file to be restored. This is transparent to the process. For example, the following command automatically restores the file if released.
$ cat /mnt/lustre/released_file

26.4.3.
 Request monitoring
		

The list of registered requests and their status can be monitored, per MDT, with the following command:
$ lctl get_param -n mdt.lustre-MDT0000.hsm.actions
The list of requests currently being processed by a copytool is available with:
$ lctl get_param -n mdt.lustre-MDT0000.hsm.active_requests

26.5.
 File states
		

When files are archived or released, their state in the Lustre file system changes. This state can be read using the following lfs command:
$ lfs hsm_state FILE1 [FILE2...]
There is also a list of specific policy flags which could be set to have a per-file specific policy:

	NOARCHIVE This file will never be archived.

	NORELEASE This file will never be released. This value cannot be set if the flag is currently set to RELEASED

	DIRTY This file has been modified since a copy of it was made in the HSM solution. DIRTY files should be archived again. The DIRTY flag can only be set if EXIST is set.

The following options can only be set by the root user.
	LOST This file was previously archived but the
copy was lost on the HSM solution for some reason in the backend (for example,
by a corrupted tape), and could not be restored. If the file is not in the
RELEASE state it needs to be archived again. If the file
is in the RELEASE state, the file data is lost.

Some flags can be manually set or cleared using the following commands:
$ lfs hsm_set [FLAGS] FILE1 [FILE2...]
$ lfs hsm_clear [FLAGS] FILE1 [FILE2...]

26.6.
 Tuning
		

26.6.1.
 hsm_controlpolicy
		

hsm_control controls coordinator activity and can also purge the action list.
$ lctl set_param mdt.$FSNAME-MDT0000.hsm_control=purge
Possible values are:
	enabled Start coordinator thread. Requests are dispatched on available copytool instances.

	disabled Pause coordinator activity. No new request will be scheduled. No timeout will be handled. New requests will be registered but will be handled only when the coordinator is enabled again.

	shutdown Stop coordinator thread. No request can be submitted.

	purge Clear all recorded requests. Do not change coordinator state.

26.6.2.
 max_requests
		

max_requests is the maximum number of active
requests at the same time. This is a per coordinator value, and independent of
the number of agents.
For example, if 2 MDT and 4 agents are present, the agents will never have to handle more than 2 x max_requests.
$ lctl set_param mdt.$FSNAME-MDT0000.hsm.max_requests=10

26.6.3.
 policy
		

Change system behavior. Values can be added or removed by prefixing them with '+' or '-'.
$ lctl set_param mdt.$FSNAME-MDT0000.hsm.policy=+NRA
Possible values are a combination of:
	NRA No Retry Action. If a restore fails, do not reschedule it automatically.

	NBR Non Blocking Restore. No automatic restore is triggered. Access to a released file returns ENODATA.

26.6.4.
 grace_delay
		

grace_delay is the delay, expressed in seconds,
before a successful or failed request is cleared from the whole request
list.
$ lctl set_param mdt.$FSNAME-MDT0000.hsm.grace_delay=10

26.7.
 change logs
		

A changelog record type “HSM“ was added for Lustre file system
logs that relate to HSM events.
16HSM 13:49:47.469433938 2013.10.01 0x280 t=[0x200000400:0x1:0x0]
Two items of information are available for each HSM record: the
FID of the modified file and a bit mask. The bit mask codes the following
information (lowest bits first):
	Error code, if any (7 bits)

	HSM event (3 bits)
	HE_ARCHIVE = 0 File has been archived.

	HE_RESTORE = 1 File has been restored.

	HE_CANCEL = 2 A request for this file has been canceled.

	HE_RELEASE = 3 File has been released.

	HE_REMOVE = 4 A remove request has been executed automatically.

	HE_STATE = 5 File flags have changed.

	HSM flags (3 bits)
	CLF_HSM_DIRTY=0x1

In the above example, 0x280 means the error code is 0 and the event is HE_STATE.
When using liblustreapi, there is a list of helper functions to easily extract the different values from this bitmask, like: hsm_get_cl_event(), hsm_get_cl_flags(), and hsm_get_cl_error()

26.8.
 Policy engine
		

A Lustre file system does not have an internal component responsible for automatically scheduling archive requests and release requests under any conditions (like low space). Automatically scheduling archive operations is the role of the policy engine.
It is recommended that the Policy Engine run on a dedicated client, similar to an agent node, with a Lustre version 2.5+.
A policy engine is a userspace program using the Lustre file system HSM specific API to monitor the file system and schedule requests.
Robinhood is the recommended policy engine.
26.8.1.
 Robinhood
		

Robinhood is a Policy engine and reporting tool for large file
systems. It maintains a replicate of file system metadata in a database that
can be queried at will. Robinhood makes it possible to schedule mass action on
file system entries by defining attribute-based policies, provides fast find
and du enhanced clones, and provides administrators with an overall
view of file system content through a web interface and command line tools.
Robinhood can be used for various configurations. Robinhood is an external project, and further information can be found on the project website: https://sourceforge.net/apps/trac/robinhood/wiki/Doc.

Chapter 27. Mapping UIDs and GIDs with
 Nodemap

This chapter describes how to map UID and GIDs across a Lustre file
 system using the nodemap feature, and includes the following
 sections:
	Section 27.1, “Setting a Mapping”

	Section 27.2, “Altering Properties”

	Section 27.3, “Enabling the Feature”

	Section 27.4, “default Nodemap”

	Section 27.5, “Verifying Settings”

	Section 27.6, “Ensuring Consistency”

27.1. Setting a Mapping

The nodemap feature supported in Lustre 2.9 was first
 introduced in Lustre 2.7 as a technology preview. It allows UIDs and GIDs
 from remote systems to be mapped to local sets of UIDs and GIDs while
 retaining POSIX ownership, permissions and quota information. As a result,
 multiple sites with conflicting user and group identifiers can operate on
 a single Lustre file system without creating collisions in UID or GID
 space.
27.1.1. Defining Terms

When the nodemap feature is enabled, client file system access to
 a Lustre system is filtered through the nodemap identity mapping policy
 engine. Lustre connectivity is governed by network identifiers, or
 NIDs, such as
 192.168.7.121@tcp. When an operation is made from a
 NID, Lustre decides if that NID is part of a
 nodemap, a policy group consisting of one or
 more NID ranges. If no policy group exists for that NID, access is
 squashed to user nobody by default. Each policy group
 also has several properties, such as
 trusted
 and admin, which determine access conditions.
 A collection of identity maps or
 idmaps are kept for each policy group. These
 idmaps determine how UIDs and GIDs on the client are translated into the
 canonical user space of the local Lustre file system.
In order for nodemap to function properly, the MGS, MDS, and OSS
 systems must all have a version of Lustre which supports nodemap.
 Clients operate transparently and do not require special
 configuration or knowledge of the nodemap setup.

27.1.2. Deciding on NID Ranges

NIDs can be described as either a singleton address or a range of
 addresses. A single address is described in standard Lustre NID format,
 such as 10.10.6.120@tcp. A range
 is described using a dash to separate the range, for example,
 192.168.20.[0-255]@tcp.
The range must be contiguous. The full LNet definition for a
 nidlist is as follows:

<nidlist> :== <nidrange> [' ' <nidrange>]
<nidrange> :== <addrrange> '@' <net>
<addrrange> :== '*' |
 <ipaddr_range> |
 <numaddr_range>
<ipaddr_range> :==
 <numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>
<numaddr_range> :== <number> |
 <expr_list>
<expr_list> :== '[' <range_expr> [',' <range_expr>] ']'
<range_expr> :== <number> |
 <number> '-' <number> |
 <number> '-' <number> '/' <number>
<net> :== <netname> | <netname><number>
<netname> :== "lo" | "tcp" | "o2ib" | "gni"
<number> :== <nonnegative decimal> | <hexadecimal>

27.1.3. Describing and Deploying a Sample Mapping

Deploy nodemap by first considering which users need to be
 mapped, and what sets of network addresses or ranges are involved.
 Issues of visibility between users must be examined as well.
Consider a deployment where researchers are working on data
 relating to birds. The researchers use a computing system which mounts
 Lustre from a single IPv4 address, 192.168.0.100.
 Name this policy group BirdResearchSite. The IP
 address forms the NID 192.168.0.100@tcp. Create the
 policy group and add the NID to that group on the MGS
 using the lctl command:
mgs# lctl nodemap_add BirdResearchSite
mgs# lctl nodemap_add_range --name BirdResearchSite --range 192.168.0.100@tcp
Note
A NID cannot be in more than one policy group. Assign a NID to
 a new policy group by first removing it from the existing group.

The researchers use the following identifiers on their host system:
	swan (UID 530) member of group
 wetlands (GID 600)

	duck (UID 531) member of group
 wetlands (GID 600)

	hawk (UID 532) member of group
 raptor (GID 601)

	merlin (UID 533) member of group
 raptor (GID 601)

Assign a set of six idmaps to this policy group, with four for UIDs,
 and two for GIDs. Pick a starting point, e.g. UID 11000, with room for
 additional UIDs and GIDs to be added as the configuration grows.
 Use the lctl command to set up the idmaps:
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 530:11000
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 531:11001
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 532:11002
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype uid --idmap 533:11003
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype gid --idmap 600:11000
mgs# lctl nodemap_add_idmap --name BirdResearchSite --idtype gid --idmap 601:11001
The parameter 530:11000 assigns a client UID,
 for example UID 530, to a single canonical UID,
 such as UID 11000. Each assignment is made individually. There is no
 method to specify a range 530-533:11000-11003.
 UID and GID idmaps are assigned separately. There is no implied
 relationship between the two.
Files created on the Lustre file system from the
 192.168.0.100@tcp NID using UID
 duck and GID wetlands are stored
 in the Lustre file system using the canonical identifiers, in this case
 UID 11001 and GID 11000. A different NID, if not part of the same policy
 group, sees its own view of the same file space.
Suppose a previously created project directory exists owned by UID
 11002/GID 11001, with mode 770. When users hawk and
 merlin at 192.168.0.100 place files named
 hawk-file and merlin-file into the
 directory, the contents from the 192.168.0.100 client appear as:
[merlin@192.168.0.100 projectsite]$ ls -la
total 34520
drwxrwx--- 2 hawk raptor 4096 Jul 23 09:06 .
drwxr-xr-x 3 nobody nobody 4096 Jul 23 09:02 ..
-rw-r--r-- 1 hawk raptor 10240000 Jul 23 09:05 hawk-file
-rw-r--r-- 1 merlin raptor 25100288 Jul 23 09:06 merlin-file
From a privileged view, the canonical owners are displayed:
[root@trustedSite projectsite]# ls -la
total 34520
drwxrwx--- 2 11002 11001 4096 Jul 23 09:06 .
drwxr-xr-x 3 root root 4096 Jul 23 09:02 ..
-rw-r--r-- 1 11002 11001 10240000 Jul 23 09:05 hawk-file
-rw-r--r-- 1 11003 11001 25100288 Jul 23 09:06 merlin-file
If UID 11002 or GID 11001 do not exist on the Lustre MDS or MGS,
 create them in LDAP or other data sources, or trust clients by setting
 identity_upcall to NONE. For more
 information, see Section 40.1, “User/Group Upcall”.
Building a larger and more complex configuration is possible by
 iterating through the lctl commands above. In
 short:
	Create a name for the policy group.

	Create a set of NID ranges used by the
 group.

	Define which UID and GID translations need to occur for the
 group.

27.2. Altering Properties

Privileged users access mapped systems with rights dependent on
 certain properties, described below. By default, root access is squashed
 to user nobody, which interferes with most
 administrative actions.
27.2.1. Managing the Properties

Several properties exist, off by default, which change
 client behavior: admin,
 trusted, squash_uid,
 squash_gid, and deny_unknown.

	The trusted property permits members
 of a policy group to see the file system's canonical identifiers.
 In the above example, UID 11002 and GID 11001 will be seen without
 translation. This can be utilized when local UID and GID sets
 already map directly to the specified users.

	The property admin defines whether
 root is squashed on the policy group. By default, it is
 squashed, unless this property is enabled. Coupled with the
 trusted property, this will allow unmapped
 access for backup nodes, transfer points, or other administrative
 mount points.

	The property deny_unknown denies all access
 to users not mapped in a particular nodemap. This is useful if a site
 is concerned about unmapped users accessing the file system in order to
 satisfy security requirements.

	The properties squash_uid and
 squash_gid define the default UID and GID that users will
 be squashed to if unmapped, unless the deny_unknown flag is set, in
 which case access will still be denied.

Alter values to either true (1) or false (0) on the MGS:
mgs# lctl nodemap_modify --name BirdAdminSite --property trusted --value 1
mgs# lctl nodemap_modify --name BirdAdminSite --property admin --value 1
mgs# lctl nodemap_modify --name BirdAdminSite --property deny_unknown --value 1
Change values during system downtime to minimize the chance of any
 ownership or permissions problems if the policy group is active.
 Although changes can be made live, client caching of data may interfere
 with modification as there are a few seconds of lead time before the
 change is distributed.

27.2.2. Mixing Properties

With both admin and trusted
 properties set, the policy group has full access, as if nodemap was
 turned off, to the Lustre file system. The administrative site for the
 Lustre file system needs at least one group with both properties in
 order to perform maintenance or to perform administrative tasks.
Warning
MDS systems must be in a policy
 group with both these properties set to 1. It is recommended to put the
 MDS in a policy group labeled “TrustedSystems” or some identifier that
 makes the association clear.

If a policy group has the admin
 property set, but does not have the property
 trusted set, root is mapped directly to
 root, any explicitly specified UID and GID idmaps are honored, and
 other access is squashed. If root alters ownership to UIDs or GIDs
 which are locally known from that host but not part of an idmap, root
 effectively changes ownership of those files to the default
 squashed UID and GID.
If trusted is set but admin
 is not, the policy group has full access to the canonical UID and GID
 sets of the Lustre file system, and root is squashed.
The deny_unknown property, once enabled, prevents unmapped users
 from accessing the file system. Root access also is denied, if the
 admin property is off, and root is not part of any
 mapping.
When nodemaps are modified, the change events are queued and
 distributed across the cluster. Under normal conditions, these changes
 can take around ten seconds to propagate. During this distribution
 window, file access could be made via the old or new nodemap settings.
 Therefore, it is recommended to save changes for a maintenance window
 or to deploy them while the mapped nodes are not actively writing to the
 file system.

27.3. Enabling the Feature

The nodemap feature is simple to enable:
mgs# lctl nodemap_activate 1
Passing the parameter 0 instead of 1 disables the feature again.
 After deploying the feature, validate the mappings are intact before
 offering the file system to be mounted by clients.
Introduced in Lustre 2.8So far, changes have been made on the MGS. Prior to
 Lustre 2.9, changes must also be manually set on MDS systems as well.
 Also, changes must be manually deployed to OSS servers if quota
 is enforced, utilizing lctl set_param
 instead of lctl. Prior to 2.9,
 the configuration is not persistent, requiring a script
 which generates the mapping to be saved and deployed after every Lustre
 restart. As an example, use this style to deploy settings on the
 OSS:

oss# lctl set_param nodemap.add_nodemap=SiteName
oss# lctl set_param nodemap.add_nodemap_range='SiteName 192.168.0.15@tcp'
oss# lctl set_param nodemap.add_nodemap_idmap='SiteName uid 510:1700'
oss# lctl set_param nodemap.add_nodemap_idmap='SiteName gid 612:1702'

 In Lustre 2.9 and later, nodemap
 configuration is saved on the MGS and distributed automatically to
 MGS, MDS, and OSS nodes, a process which takes approximately
 ten seconds in normal circumstances.

27.4. default Nodemap

There is a special nodemap called default. As the
 name suggests, it is created by default and cannot be removed. It is like
 a fallback nodemap, setting the behaviour for Lustre clients that do not
 match any other nodemap.
Because of its special role, only some parameters can be set on the
 default nodemap:
	admin

	trusted

	squash_uid

	squash_gid

	fileset

	audit_mode

In particular, no UID/GID mapping can be defined on the
 default nodemap.
Note
Be careful when altering the admin and
 trusted properties of the default
 nodemap, especially if your Lustre servers fall into this nodemap.

27.5. Verifying Settings

By using lctl nodemap_info all, existing nodemap
 configuration is listed for easy export. This command acts as a shortcut
 into the configuration interface for nodemap. On the Lustre MGS, the
 nodemap.active parameter contains a 1
 if nodemap is active on the system. Each policy group
 creates a directory containing the following parameters:
	admin and trusted each
 contain a 1 if the values are set, and
 0 otherwise.

	idmap contains a list of the idmaps for the
 policy group, while ranges contains a list of
 NIDs for the group.

	squash_uid and squash_gid
 determine what UID and GID users are squashed to if needed.

The expected outputs for the BirdResearchSite in the example above
 are:
mgs# lctl get_param nodemap.BirdResearchSite.idmap

 [
 { idtype: uid, client_id: 530, fs_id: 11000 },
 { idtype: uid, client_id: 531, fs_id: 11001 },
 { idtype: uid, client_id: 532, fs_id: 11002 },
 { idtype: uid, client_id: 533, fs_id: 11003 },
 { idtype: gid, client_id: 600, fs_id: 11000 },
 { idtype: gid, client_id: 601, fs_id: 11001 }
]

 mgs# lctl get_param nodemap.BirdResearchSite.ranges
 [
 { id: 11, start_nid: 192.168.0.100@tcp, end_nid: 192.168.0.100@tcp }
]

27.6. Ensuring Consistency

Consistency issues may arise in a nodemap enabled configuration when
 Lustre clients mount from an unknown NID range, new UIDs and GIDs that
 were not part of a known map are added, or there are misconfigurations in
 the rules. Keep in mind the following when activating nodemap
 on a production system:
	Creating new policy groups or idmaps on a production system
 is allowed, but reserve a maintenance window to alter the
 trusted property to avoid metadata problems.

	To perform administrative tasks, access the Lustre file system
 via a policy group with trusted
 and admin properties set. This prevents
 the creation of orphaned and squashed files. Granting the
 admin property without the
 trusted property
 is dangerous. The root user on the client may know of UIDs
 and GIDs that are not present in any idmap. If root alters ownership
 to those identifiers, the ownership is squashed as a result. For
 example, tar file extracts may be flipped from an expected UID
 such as UID 500 to nobody, normally UID 99.

	To map distinct UIDs at two or more sites onto a single UID or GID
 on the Lustre file system, create overlapping idmaps and place each site
 in its own policy group. Each distinct UID may have its own mapping onto
 the target UID or GID.

	Introduced in Lustre 2.8In Lustre 2.8, changes must be manually kept in a
 script file to be re-applied after a Lustre reload, and changes must be
 made on each OSS, MDS, and MGS nodes, as there is no automatic
 synchronization between the nodes.

	If deny_unknown is in effect, it is possible
 for unmapped users to see dentries which were viewed by a mapped user.
 This is a result of client caching, and unmapped users will not be able
 to view any file contents.

	Nodemap activation status can be checked with
 lctl nodemap_info,
 but extra validation is possible. One way of ensuring valid
 deployment on a production system is to create a fingerprint of known
 files with specific UIDs and GIDs mapped to a test
 client. After bringing the Lustre system online after maintenance, the
 test client can validate the UIDs and GIDs map correctly before the
 system is mounted in user space.

Chapter 28. Configuring Shared-Secret Key
 (SSK) Security

This chapter describes how to configure Shared-Secret Key security
 and includes the following sections:
	Section 28.1, “SSK Security Overview”

	Section 28.2, “SSK Security Flavors”

	Section 28.3, “SSK Key Files”

	Section 28.4, “Lustre GSS Keyring”

	Section 28.5, “Role of Nodemap in SSK”

	Section 28.6, “SSK Examples”

	Section 28.7, “Viewing Secure PtlRPC Contexts”

28.1. SSK Security Overview

The SSK feature ensures integrity and data protection for Lustre
 PtlRPC traffic. Key files containing a shared secret and session-specific
 attributes are distributed to Lustre hosts. This authorizes Lustre hosts
 to mount the file system and optionally enables secure data transport,
 depending on which security flavor is configured. The administrator handles
 the generation, distribution, and installation of SSK key files, see
 Section 28.3.1, “Key File Management”.
28.1.1. Key features

SSK provides the following key features:
	Host-based authentication

	Data Transport Privacy
	Encrypts Lustre RPCs

	Prevents eavesdropping

	Data Transport Integrity - Keyed-Hashing Message
 Authentication Code (HMAC)
	Prevents man-in-the-middle attacks

	Ensures RPCs cannot be altered undetected

28.2. SSK Security Flavors

SSK is implemented as a Generic Security Services (GSS) mechanism
 through Lustre's support of the GSS Application Program Interface (GSSAPI).
 The SSK GSS mechanism supports five flavors that offer varying levels of
 protection.
Flavors provided:
	skn - SSK Null (Authentication)

	ska - SSK Authentication and Integrity for
 non-bulk RPCs

	ski - SSK Authentication and Integrity

	skpi - SSK Authentication, Privacy, and
 Authentication

	gssnull - Provides no protection. Used for
 testing purposes only

The table below describes the security characteristics of each
 flavor:
Table 28.1. SSK Security Flavor Protections
	

 	
 skn

 	
 ska

 	
 ski

 	
 skpi

	
 Required to mount file system

 	
 Yes

 	
 Yes

 	
 Yes

 	
 Yes

	
 Provides RPC Integrity

 	
 No

 	
 Yes

 	
 Yes

 	
 Yes

	
 Provides RPC Privacy

 	
 No

 	
 No

 	
 No

 	
 Yes

	
 Provides Bulk RPC Integrity

 	
 No

 	
 No

 	
 Yes

 	
 Yes

	
 Provides Bulk RPC Privacy

 	
 No

 	
 No

 	
 No

 	
 Yes

Valid non-GSS flavors include:
null - Provides no protection. This is the
 default flavor.
plain - Plaintext with a hash on each RPC.
28.2.1. Secure RPC Rules

Secure RPC configuration rules are written to the Lustre log
 (llog) with the lctl command. Rules are processed
 with the llog and dictate the security flavor that is used for a
 particular Lustre network and direction.
Note
Rules take affect in a matter of seconds and impact both existing
 and new connections.

Rule format:
target.srpc.flavor.network[.direction]=flavor
	target - This could be the
 file system name or a specific
 MDT/OST device name.

	network - LNet network
 name of the RPC initiator. For example
 tcp1 or o2ib0. This can also
 be the keyword default that applies to all
 networks otherwise specified.

	direction - Direction is
 optional. This could be one of
 mdt2mdt, mdt2ost,
 cli2mdt, or cli2ost.

Note
To secure the connection to the MGS use the
 mgssec=flavor
 mount option. This is required because security rules are unknown to
 the initiator until after the MGS connection has been established.

The examples below are for a test Lustre file system named
 testfs.
28.2.1.1. Defining Rules

Rules can be defined and deleted in any order. The rule with the
 greatest specificity for a given connection is applied. The
 fsname.srpc.flavor.default
 rule is the broadest rule as it applies to all non-MGS connections for
 the file system in the absence of a more specific rule. You may tailor
 SSK security to your needs by further specifying a specific
 target, network, and/or
 direction.
The following example illustrates an approach to configuring SSK
 security for an environment consisting of three LNet networks. The
 requirements for this example are:
	All non-MGS connections must be authenticated.

	PtlRPC traffic on LNet network tcp0 must
 be encrypted.

	LNet networks tcp1 and
 o2ib0 are local physically secure networks that
 require high performance. Do not encrypt PtlRPC traffic on these
 networks.

	Ensure that all non-MGS connections are authenticated and
 encrypted by default.
mgs# lctl conf_param testfs.srpc.flavor.default=skpi

	Override the file system default security flavor on LNet
 networks tcp1 and o2ib0 with
 ska. Security flavor ska
 provides authentication but without the performance impact of
 encryption and bulk RPC integrity.
mgs# lctl conf_param testfs.srpc.flavor.tcp1=ska
mgs# lctl conf_param testfs.srpc.flavor.o2ib0=ska

Note
Currently the "lctl set_param -P" format does
 not work with sptlrpc.

28.2.1.2. Listing Rules

To view the Secure RPC Config Rules, enter:
mgs# lctl get_param mgs.*.live.testfs
...
Secure RPC Config Rules:
testfs.srpc.flavor.tcp.cli2mdt=skpi
testfs.srpc.flavor.tcp.cli2ost=skpi
testfs.srpc.flavor.o2ib=ski
...

28.2.1.3. Deleting Rules

To delete a security flavor for an LNet network use the
 conf_param -d command to delete the flavor for that
 network:
For example, to delete the
 testfs.srpc.flavor.o2ib1=ski rule, enter:
mgs# lctl conf_param -d testfs.srpc.flavor.o2ib1

28.3. SSK Key Files

SSK key files are a collection of attributes formatted as fixed
 length values and stored in a file, which are distributed by the
 administrator to client and server nodes. Attributes include:
	Version - Key file schema
 version number. Not user-defined.

	Type - A mandatory attribute
 that denotes the Lustre role of the key file consumer. Valid key types
 are:

	mgs - for MGS when the
 mgssec mount.lustre option
 is used.

	server - for MDS and OSS
 servers

	client - for clients as
 well as servers who communicate with other servers in a client
 context (e.g. MDS communication with OSTs).

	HMAC algorithm - The Keyed-Hash
 Message Authentication Code algorithm used for integrity. Valid
 algorithms are (Default: SHA256):

	SHA256

	SHA512

	Cryptographic algorithm - Cipher
 for encryption. Valid algorithms are (Default: AES-256-CTR).
	AES-256-CTR

	Session security context expiration -
 Seconds before session contexts generated from key expire and are
 regenerated (Default: 604800 seconds (7 days)).

	Shared key length - Shared key
 length in bits (Default: 256).

	Prime length - Length of prime
 (p) in bits used for the Diffie-Hellman Key Exchange (DHKE).
 (Default: 2048). This is generated only for client keys and can take a
 while to generate. This value also sets the minimum prime length that
 servers and MGS will accept from a client. Clients attempting to
 connect with a prime length less than the minimum will be rejected.
 In this way servers can guarantee the minimum encryption level that
 will be permitted.

	File system name - Lustre File
 system name for key.

	MGS NIDs - Comma-separated list
 of MGS NIDs. Only required when mgssec is used
 (Default: "").

	Nodemap name - Nodemap name for
 key (Default: "default"). See Section 28.5, “Role of Nodemap in SSK”

	Shared key - Shared secret used
 by all SSK flavors to provide authentication.

	Prime (p) - Prime used for the
 DHKE. This is only used for keys with Type=client.

Note
Key files provide a means to authenticate Lustre connections;
 always store and transfer key files securely. Key files must not be
 world writable or they will fail to load.

28.3.1. Key File Management

The lgss_sk utility is used to write, modify,
 and read SSK key files. lgss_sk can be used to load
 key files singularly into the kernel keyring. lgss_sk
 options include:
Table 28.2. lgss_sk Parameters
	
 Parameter

 	
 Value

 	
 Description

	
 -l|--load

 	
 filename

 	
 Install key from file into user's session keyring. Must
 be executed by root.

	
 -m|--modify

 	
 filename

 	
 Modify a file's key attributes

	
 -r|--read

 	
 filename

 	
 Show file's key attributes

	
 -w|--write

 	
 filename

 	
 Generate key file

	
 -c|--crypt

 	
 cipher

 	
 Cipher for encryption (Default: AES Counter mode)

 AES-256-CTR

	
 -i|--hmac

 	
 hash

 	
 Hash algorithm for intregrity (Default: SHA256)

 SHA256 or SHA512

	
 -e|--expire

 	
 seconds

 	
 Seconds before contexts from key expire (Default: 604800
 (7 days))

	
 -f|--fsname

 	
 name

 	
 File system name for key

	
 -g|--mgsnids

 	
 NID(s)

 	
 Comma separated list of MGS NID(s). Only required when
 mgssec is used (Default: "")

	
 -n|--nodemap

 	
 map

 	
 Nodemap name for key (Default: "default")

	
 -p|--prime-bits

 	
 length

 	
 Prime length (p) for DHKE in bits (Default: 2048)

	
 -t|--type

 	
 type

 	
 Key type (mgs, server, client)

	
 -k|--key-bits

 	
 length

 	
 Shared key length in bits (Default: 256)

	
 -d|--data

 	
 file

 	
 Shared key random data source (Default: /dev/random)

	
 -v|--verbose

 	

 	
 Increase verbosity for errors

28.3.1.1. Writing Key Files

Key files are generated by the lgss_sk
 utility. Parameters are specified on the command line followed by the
 --write parameter and the filename to write
 to. The lgss_sk utility will not overwrite files
 so the filename must be unique. Mandatory parameters for generating
 key files are --type, either
 --fsname or --mgsnids, and
 --write; all other parameters
 are optional.
lgss_sk uses /dev/random
 as the default entropy data source; you may override this with the
 --data parameter. When no hardware random
 number generator is available on the system where
 lgss_sk is executing, you may need to press keys on
 the keyboard or move the mouse (if directly attached to the system)
 or cause disk IO (if system is remote), in order to generate entropy
 for the shared key. It is possible to use
 /dev/urandom for testing purposes but this may
 provide less security in some cases.
Example:
To create a server type key file for the
 testfs Lustre file system for clients in the
 biology nodemap, enter:
server# lgss_sk -t server -f testfs -n biology \
-w testfs.server.biology.key

28.3.1.2. Modifying Key Files

Like writing key files you modify them by specifying the
 paramaters on the command line that you want to change. Only key file
 attributes associated with the parameters provided are changed; all
 other attributes remain unchanged.
To modify a key file's Type to
 client and populate the
 Prime (p) key attribute, if it is missing,
 enter:
client# lgss_sk -t client -m testfs.client.biology.key
To add MGS NIDs 192.168.1.101@tcp,10.10.0.101@o2ib
 to server key file testfs.server.biology.key and
 client key file testfs.client.biology.key, enter

server# lgss_sk -g 192.168.1.101@tcp,10.10.0.101@o2ib \
-m testfs.server.biology.key

client# lgss_sk -g 192.168.1.101@tcp,10.10.0.101@o2ib \
-m testfs.client.biology.key
To modify the testfs.server.biology.key on
 the MGS to support MGS connections from biology
 clients, modify the key file's Type to include
 mgs in addition to server,
 enter:
mgs# lgss_sk -t mgs,server -m testfs.server.biology.key

28.3.1.3. Reading Key Files

Read key files with the lgss_sk utility and
 --read parameter. Read the keys modified in the
 previous examples:
mgs# lgss_sk -r testfs.server.biology.key
Version: 1
Type: mgs server
HMAC alg: SHA256
Crypt alg: AES-256-CTR
Ctx Expiration: 604800 seconds
Shared keylen: 256 bits
Prime length: 2048 bits
File system: testfs
MGS NIDs: 192.168.1.101@tcp 10.10.0.101@o2ib
Nodemap name: biology
Shared key:
 0000: 84d2 561f 37b0 4a58 de62 8387 217d c30a ..V.7.JX.b..!}..
 0010: 1caa d39c b89f ee6c 2885 92e7 0765 c917 l(....e..

client# lgss_sk -r testfs.client.biology.key
Version: 1
Type: client
HMAC alg: SHA256
Crypt alg: AES-256-CTR
Ctx Expiration: 604800 seconds
Shared keylen: 256 bits
Prime length: 2048 bits
File system: testfs
MGS NIDs: 192.168.1.101@tcp 10.10.0.101@o2ib
Nodemap name: biology
Shared key:
 0000: 84d2 561f 37b0 4a58 de62 8387 217d c30a ..V.7.JX.b..!}..
 0010: 1caa d39c b89f ee6c 2885 92e7 0765 c917 l(....e..
Prime (p) :
 0000: 8870 c3e3 09a5 7091 ae03 f877 f064 c7b5 .p....p....w.d..
 0010: 14d9 bc54 75f8 80d3 22f9 2640 0215 6404 ...Tu...".&@..d.
 0020: 1c53 ba84 1267 bea2 fb05 37a4 ed2d 5d90 .S...g....7..-].
 0030: 84e3 1a67 67f0 47c7 0c68 5635 f50e 9cf0 ...gg.G..hV5....
 0040: e622 6f53 2627 6af6 9598 eeed 6290 9b1e ."oS&'j.....b...
 0050: 2ec5 df04 884a ea12 9f24 cadc e4b6 e91d J...$......
 0060: 362f a239 0a6d 0141 b5e0 5c56 9145 6237 6/.9.m.A..\V.Eb7
 0070: 59ed 3463 90d7 1cbe 28d5 a15d 30f7 528b Y.4c....(..]0.R.
 0080: 76a3 2557 e585 a1be c741 2a81 0af0 2181 v.%W.....A*...!.
 0090: 93cc a17a 7e27 6128 5ebd e0a4 3335 db63 ...z~'a(^...35.c
 00a0: c086 8d0d 89c1 c203 3298 2336 59d8 d7e7 2.#6Y...
 00b0: e52a b00c 088f 71c3 5109 ef14 3910 fcf6 .*....q.Q...9...
 00c0: 0fa0 7db7 4637 bb95 75f4 eb59 b0cd 4077 ..}.F7..u..Y..@w
 00d0: 8f6a 2ebd f815 a9eb 1b77 c197 5100 84c0 .j.......w..Q...
 00e0: 3dc0 d75d 40b3 6be5 a843 751a b09c 1b20 =..]@.k..Cu....
 00f0: 8126 4817 e657 b004 06b6 86fb 0e08 6a53 .&H..W........jS

28.3.1.4. Loading Key Files

Key files can be loaded into the kernel keyring with the
 lgss_sk utility or at mount time with the
 skpath mount option. The skpath
 method has the advantage that it accepts a directory path and loads
 all key files within the directory into the keyring. The
 lgss_sk utility loads a single key file into the
 keyring with each invocation. Key files must not be world writable or
 they will fail to load.
Third party tools can also load the keys if desired. The only
 caveat is that the key must be available when the request_key upcall
 to userspace is made and they use the correct key descriptions for a
 key so that it can be found during the upcall
 (see Key Descriptions).
Examples:
Load the testfs.server.biology.key key file
 using lgss_sk,
 enter:
server# lgss_sk -l testfs.server.biology.key
Use the skpath mount option to load all of
 the key files in the /secure_directory directory
 when mounting a storage target, enter:
server# mount -t lustre -o skpath=/secure_directory \
/storage/target /mount/point
Use the skpath mount option to load key files
 into the keyring on a client, enter:
client# mount -t lustre -o skpath=/secure_directory \
mgsnode:/testfs /mnt/testfs

28.4. Lustre GSS Keyring

The Lustre GSS Keyring binary lgss_keyring is
 used by SSK to handle the upcall from kernel space into user space via
 request-key. The purpose of
 lgss_keyring is to create a token that is passed as
 part of the security context initialization RPC (SEC_CTX_INIT)
28.4.1. Setup

The Lustre GSS keyring types of flavors utilize the Linux kernel
 keyring infrastructure to maintain keys as well as to perform the
 upcall from kernel space to userspace for key
 negotiation/establishment. The GSS keyring establishes a key type
 (see “request-key(8)”) named lgssc when the Lustre
 ptlrpc_gss kernel module is loaded. When a security
 context must be established it creates a key and uses the
 request-key binary in an upcall to establish the
 key. This key will look for the configuration file in
 /etc/request-key.d with the name
 keytype.conf, for Lustre this is
 lgssc.conf.
Each node participating in SSK Security must have a
 /etc/request-key.d/lgssc.conf file that contains the
 following single line:

 create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

The request-key binary will call
 lgss_keyring with the arguments following it with
 their substituted values (see request-key.conf(5)).

28.4.2. Server Setup

Lustre servers do not use the Linux
 request-key mechanism as clients do. Instead
 servers run a daemon that uses a pipefs with the kernel to trigger
 events based on read/write to a file descriptor. The server-side
 binary is lsvcgssd. It can be executed in the
 foreground or as a daemon. Below are the parameters for the
 lsvcgssd binary which requires various security
 flavors (gssnull, krb5, sk) to be enabled
 explicitly. This ensures that only required functionality is
 enabled.
Table 28.3. lsvcgssd Parameters
	
 Parameter

 	
 Description

	
 -f

 	
 Run in foreground

	
 -n

 	
 Do not establish Kerberos credentials

	
 -v

 	
 Verbosity

	
 -m

 	
 Service MDS

	
 -o

 	
 Service OSS

	
 -g

 	
 Service MGS

	
 -k

 	
 Enable Kerberos support

	
 -s

 	
 Enable Shared Key support

	
 -z

 	
 Enable gssnull support

A SysV style init script is installed for starting and stopping
 the lsvcgssd daemon. The init script checks the
 LSVCGSSARGS variable in the
 /etc/sysconfig/lsvcgss configuration file for
 startup parameters.
Keys during the upcall on the client and handling of an RPC on
 the server are found by using a specific key description for each key
 in the kernel keyring.
For each MGS NID there must be a separate key loaded. The format
 of the key description should be:
Table 28.4. Key Descriptions
	
 Type

 	
 Key Description

 	
 Example

	
 MGC

 	
 lustre:MGCNID

 	
 lustre:MGC192.168.1.10@tcp

	
 MDC/OSC/OSP/LWP

 	
 lustre:fsname

 	
 lustre:testfs

	
 MDT

 	
 lustre:fsname:NodemapName

 	
 lustre:testfs:biology

	
 OST

 	
 lustre:fsname:NodemapName

 	
 lustre:testfs:biology

	
 MGS

 	
 lustre:MGS

 	
 lustre:MGS

All keys for Lustre use the user type for
 keys and are attached to the user’s keyring. This is not
 configurable. Below is an example showing how to list the user’s
 keyring, load a key file, read the key, and clear the key from the
 kernel keyring.
client# keyctl show
Session Keyring
 17053352 --alswrv 0 0 keyring: _ses
 773000099 --alswrv 0 65534 _ keyring: _uid.0

client# lgss_sk -l /secure_directory/testfs.client.key

client# keyctl show
Session Keyring
 17053352 --alswrv 0 0 keyring: _ses
 773000099 --alswrv 0 65534 _ keyring: _uid.0
1028795127 --alswrv 0 0 _ user: lustre:testfs

client# keyctl pipe 1028795127 | lgss_sk -r -
Version: 1
Type: client
HMAC alg: SHA256
Crypt alg: AES-256-CTR
Ctx Expiration: 604800 seconds
Shared keylen: 256 bits
Prime length: 2048 bits
File system: testfs
MGS NIDs:
Nodemap name: default
Shared key:
 0000: faaf 85da 93d0 6ffc f38c a5c6 f3a6 0408 o.........
 0010: 1e94 9b69 cf82 d0b9 880b f173 c3ea 787a ...i.......s..xz
Prime (p) :
 0000: 9c12 ed95 7b9d 275a 229e 8083 9280 94a0 {.'Z".......
 0010: 8593 16b2 a537 aa6f 8b16 5210 3dd5 4c0c 7.o..R.=.L.
 0020: 6fae 2729 fcea 4979 9435 f989 5b6e 1b8a o.')..Iy.5..[n..
 0030: 5039 8db2 3a23 31f0 540c 33cb 3b8e 6136 P9..:#1.T.3.;.a6
 0040: ac18 1eba f79f c8dd 883d b4d2 056c 0501 =...l..
 0050: ac17 a4ab 9027 4930 1d19 7850 2401 7ac4 'I0..xP$.z.
 0060: 92b4 2151 8837 ba23 94cf 22af 72b3 e567 ..!Q.7.#..".r..g
 0070: 30eb 0cd4 3525 8128 b0ff 935d 0ba3 0fc0 0...5%.(...]....
 0080: 9afa 5da7 0329 3ce9 e636 8a7d c782 6203 ..]..)<..6.}..b.
 0090: bb88 012e 61e7 5594 4512 4e37 e01d bdfc a.U.E.N7....
 00a0: cb1d 6bd2 6159 4c3a 1f4f 1167 0e26 9e5e ..k.aYL:.O.g.&.^
 00b0: 3cdc 4a93 63f6 24b1 e0f1 ed77 930b 9490 <.J.c.$....w....
 00c0: 25ef 4718 bff5 033e 11ba e769 4969 8a73 %.G....>...iIi.s
 00d0: 9f5f b7bb 9fa0 7671 79a4 0d28 8a80 1ea1 ._....vqy..(....
 00e0: a4df 98d6 e20e fe10 8190 5680 0d95 7c83 V...|.
 00f0: 6e21 abb3 a303 ff55 0aa8 ad89 b8bf 7723 n!.....U......w#

client# keyctl clear @u

client# keyctl show
Session Keyring
 17053352 --alswrv 0 0 keyring: _ses
 773000099 --alswrv 0 65534 _ keyring: _uid.0

28.4.3. Debugging GSS Keyring

Lustre client and server support several debug levels, which
 can be seen below.
Debug levels:
	0 - Error

	1 - Warn

	2 - Info

	3 - Debug

	4 - Trace

To set the debug level on the client use the Lustre
 parameter:
sptlrpc.gss.lgss_keyring.debug_level
For example to set the debug level to trace, enter:
client# lctl set_param sptlrpc.gss.lgss_keyring.debug_level=4
Server-side verbosity is increased by adding additional verbose
 flags (-v) to the command line arguments for the
 daemon. The following command runs the lsvcgssd
 daemon in the foreground with debug verbosity supporting gssnull and
 SSK
server# lsvcgssd -f -vvv -z -s
lgss_keyring is called as part of the
 request-key upcall which has no standard output;
 therefore logging is done through syslog. The server-side logging with
 lsvcgssd is written to standard output when
 executing in the foreground and to syslog in daemon mode.

28.4.4. Revoking Keys

The keys discussed above with lgss_sk and the
 skpath mount options are not revoked. They are only
 used to create valid contexts for client connections. Instead of
 revoking them they can be invalidated in one of two ways.
	Unloading the key from the user keyring on the server will
 cause new client connections to fail. If no longer necessary it
 can be deleted.

	Changing the nodemap name for the clients on the servers.
 Since the nodemap is an integral part of the shared key context
 instantiation, renaming the nodemap a group of NIDs belongs to
 will prevent any new contexts.

There currently does not exist a mechanism to flush contexts
 from Lustre. Targets could be unmounted from the servers to purge
 contexts. Alternatively shorter context expiration could be used
 when the key is created so that contexts need to be refreshed more
 frequently than the default. 3600 seconds could be reasonable
 depending on the use case so that contexts will have to be
 renegotiated every hour.

28.5. Role of Nodemap in SSK

SSK uses Nodemap (See Chapter 27, Mapping UIDs and GIDs with
 Nodemap)
 policy group names and their associated NID range(s) as a mechanism to
 prevent key file forgery, and to control the range of NIDs on which a
 given key file can be used.
Clients assume they are in the nodemap specified in the key file
 they use. When clients instantiate security contexts an upcall is
 triggered that specifies information about the context that triggers it.
 From this context information request-key calls
 lgss_keyring, which in turn looks up the key with
 description lustre:fsname or
 lustre:target_name for the MGC. Using
 the key found in the user keyring matching the description, the nodemap
 name is read from the key, hashed with SHA256, and sent to the server.

Servers look up the client’s NID to determine which nodemap the NID
 is associated with and sends the nodemap name to
 lsvcgssd. The lsvcgssd daemon
 verifies whether the HMAC equals the nodemap value sent by the client.
 This prevents forgery and invalidates the key when a client’s NID is not
 associated with the nodemap name defined on the servers.
It is not required to activate the Nodemap feature in order for SSK
 to perform client NID to nodemap name lookups.

28.6. SSK Examples

The examples in this section use 1 MGS/MDS (NID 172.16.0.1@tcp),
 1 OSS (NID 172.16.0.3@tcp), and 2 clients. The Lustre file system name is
 testfs.
28.6.1. Securing Client to Server Communications

This example illustrates how to configure SSK to apply Privacy and
 Integrity protections to client-to-server PtlRPC traffic on the
 tcp network. Rules that specify a direction,
 specifically cli2mdt and cli2ost,
 are used. This permits server-to-server communications to continue using
 null which is the default flavor
 for all Lustre connections. This arrangement provides no server-to-server
 protections, see Section 28.6.3, “Securing Server to Server Communications”.
	Create secure directory for storing SSK key files.
mds# mkdir /secure_directory
mds# chmod 600 /secure_directory
oss# mkdir /secure_directory
oss# chmod 600 /secure_directory
cli1# mkdir /secure_directory
cli1# chmod 600 /secure_directory
cli2# mkdir /secure_directory
cli2# chmod 600 /secure_directory

	Generate a key file for the MDS and OSS servers. Run:
mds# lgss_sk -t server -f testfs -w \
/secure_directory/testfs.server.key

	Securely copy the /secure_directory/testfs.server.key key
 file to the OSS.
mds# scp /secure_directory/testfs.server.key \
oss:/secure_directory/

	Securely copy the
 /secure_directory/testfs.server.key key file to
 /secure_directory/testfs.client.key on
 client1.
mds# scp /secure_directory/testfs.server.key \
client1:/secure_directory/testfs.client.key

	Modify the key file type to client on
 client1. This operation also generates a prime
 number of Prime length to populate the
 Prime (p) attribute. Run:
client1# lgss_sk -t client \
-m /secure_directory/testfs.client.key

	Create a /etc/request-key.d/lgssc.conf file
 on all nodes that contains this line
 'create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u
 %g %T %P %S' without the single quotes. Run:
mds# echo create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
oss# echo create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
client1# echo create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf
client2# echo create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S > /etc/request-key.d/lgssc.conf

	Configure the lsvcgss daemon on the MDS and
 OSS. Set the LSVCGSSDARGS variable in
 /etc/sysconfig/lsvcgss on the MDS to
 ‘-s -m’. On the OSS, set the
 LSVCGSSDARGS variable in
 /etc/sysconfig/lsvcgss to
 ‘-s -o’

	Start the lsvcgssd daemon on the MDS and
 OSS. Run:
mds# systemctl start lsvcgss.service
oss# systemctl start lsvcgss.service

	Mount the MDT and OST with the
 -o skpath=/secure_directory mount option. The
 skpath option loads all SSK key files found in the
 directory into the kernel keyring.

	 Set client to MDT and client to OST security flavor to SSK
 Privacy and Integrity, skpi:
mds# lctl conf_param testfs.srpc.flavor.tcp.cli2mdt=skpi
mds# lctl conf_param testfs.srpc.flavor.tcp.cli2ost=skpi

	Mount the testfs file system on client1 and client2:
client1# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs
client2# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs
mount.lustre: mount 172.16.0.1@tcp:/testfs at /mnt/testfs failed: Connection refused

	client2 failed to authenticate because it
 does not have a valid key file. Repeat steps 4 and 5, substitute
 client1 for client2, then mount the testfs file system on
 client2:
client2# mount -t lustre -o skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs

	Verify that the mdc and
 osc connections are using the SSK mechanism and
 that rpc and bulk security
 flavors are skpi. See
 Section 28.7, “Viewing Secure PtlRPC Contexts”.
Notice the mgc connection to the MGS has no
 secure PtlRPC security context. This is because
 skpi security was only specified for
 client-to-MDT and client-to-OST connections in step 10. The
 following example details the steps necessary to secure the
 connection to the MGS.

28.6.2. Securing MGS Communications

This example builds on the previous example.
	Enable lsvcgss MGS service support on MGS.
 Edit /etc/sysconfig/lsvcgss on the MGS and add
 the (-g) parameter to the
 LSVCGSSDARGS variable. Restart the
 lsvcgss service.

	Add mgs key type and
 MGS NIDs to
 /secure_directory/testfs.server.key
 on MDS.
mgs# lgss_sk -t mgs,server -g 172.16.0.1@tcp,172.16.0.2@tcp -m /secure_directory/testfs.server.key

	Load the modified key file on the MGS. Run:
mgs# lgss_sk -l /secure_directory/testfs.server.key

	Add MGS NIDs to
 /secure_directory/testfs.client.key
 on client, client1.
client1# lgss_sk -g 172.16.0.1@tcp,172.16.0.2@tcp -m /secure_directory/testfs.client.key

	Unmount the testfs file system on client1, then mount with the
 mgssec=skpi mount option:
cli1# mount -t lustre -o mgssec=skpi,skpath=/secure_directory 172.16.0.1@tcp:/testfs /mnt/testfs

	Verify that client1’s MGC connection is using the SSK mechanism
 and skpi security flavor. See
 Section 28.7, “Viewing Secure PtlRPC Contexts”.

28.6.3. Securing Server to Server Communications

This example illustrates how to configure SSK to apply
 Integrity protection, ski flavor,
 to MDT-to-OST PtlRPC traffic on the tcp network.
This example builds on the previous example.
	Create a Nodemap policy group named
 LustreServers on the MGS for the Lustre Servers,
 enter:
mgs# lctl nodemap_add LustreServers

	Add MDS and OSS NIDs to the LustreServers nodemap, enter:
mgs# lctl nodemap_add_range --name LustreServers --range 172.16.0.[1-3]@tcp

	Create key file of type mgs,server for use
 with nodes in the LustreServers Nodemap range.

mds# lgss_sk -t mgs,server -f testfs -g \
172.16.0.1@tcp,172.16.0.2@tcp -n LustreServers -w \
/secure_directory/testfs.LustreServers.key

	Securely copy the
 /secure_directory/testfs.LustreServers.key key
 file to the OSS.
mds# scp /secure_directory/testfs.LustreServers.key oss:/secure_directory/

	On the MDS and OSS, copy
 /secure_directory/testfs.LustreServers.key to
 /secure_directory/testfs.LustreServers.client.key.

	On each server modify the key file type of
 /secure_directory/testfs.LustreServers.client.key
 to be of type client. This operation also generates a prime number
 of Prime length to populate the
 Prime (p) attribute. Run:
mds# lgss_sk -t client -m \
/secure_directory/testfs.LustreServers.client.key
oss# lgss_sk -t client -m \
/secure_directory/testfs.LustreServers.client.key

	Load the
 /secure_directory/testfs.LustreServers.key and
 /secure_directory/testfs.LustreServers.client.key
 key files into the keyring on the MDS and OSS, enter:
mds# lgss_sk -l /secure_directory/testfs.LustreServers.key
mds# lgss_sk -l /secure_directory/testfs.LustreServers.client.key
oss# lgss_sk -l /secure_directory/testfs.LustreServers.key
oss# lgss_sk -l /secure_directory/testfs.LustreServers.client.key

	Set MDT to OST security flavor to SSK Integrity,
 ski:
mds# lctl conf_param testfs.srpc.flavor.tcp.mdt2ost=ski

	Verify that the osc and
 osp connections to the OST have a secure
 ski security context. See
 Section 28.7, “Viewing Secure PtlRPC Contexts”.

28.7. Viewing Secure PtlRPC Contexts

From the client (or servers which have mgc, osc, mdc contexts) you
 can view info regarding all users’ contexts and the flavor in use for an
 import. For user’s contexts (srpc_context), SSK and gssnull only support
 a single root UID so there should only be one context. The other file in
 the import (srpc_info) has additional sptlrpc details. The
 rpc and bulk flavors allow you to
 verify which security flavor is in use.
client1# lctl get_param *.*.srpc_*
mdc.testfs-MDT0000-mdc-ffff8800da9f0800.srpc_contexts=
ffff8800da9600c0: uid 0, ref 2, expire 1478531769(+604695), fl uptodate,cached,, seq 7, win 2048, key 27a24430(ref 1), hdl 0xf2020f47cbffa93d:0xc23f4df4bcfb7be7, mech: sk
mdc.testfs-MDT0000-mdc-ffff8800da9f0800.srpc_info=
rpc flavor: skpi
bulk flavor: skpi
flags: rootonly,udesc,
id: 3
refcount: 3
nctx: 1
gc internal 3600
gc next 3505
mgc.MGC172.16.0.1@tcp.srpc_contexts=
ffff8800dbb09b40: uid 0, ref 2, expire 1478531769(+604695), fl uptodate,cached,, seq 18, win 2048, key 3e3f709f(ref 1), hdl 0xf2020f47cbffa93b:0xc23f4df4bcfb7be6, mech: sk
mgc.MGC172.16.0.1@tcp.srpc_info=
rpc flavor: skpi
bulk flavor: skpi
flags: -,
id: 2
refcount: 3
nctx: 1
gc internal 3600
gc next 3505
osc.testfs-OST0000-osc-ffff8800da9f0800.srpc_contexts=
ffff8800db9e5600: uid 0, ref 2, expire 1478531770(+604696), fl uptodate,cached,, seq 3, win 2048, key 3f7c1d70(ref 1), hdl 0xf93e61c64b6b415d:0xc23f4df4bcfb7bea, mech: sk
osc.testfs-OST0000-osc-ffff8800da9f0800.srpc_info=
rpc flavor: skpi
bulk flavor: skpi
flags: rootonly,bulk,
id: 6
refcount: 3
nctx: 1
gc internal 3600
gc next 3505

Chapter 29. Managing Security in a Lustre File System

This chapter describes security features of the Lustre file system and
 includes the following sections:
	Section 29.1, “
 Using ACLs”

	Section 29.2, “Using Root Squash”

	Section 29.3, “
 Isolating Clients to a Sub-directory Tree”

	Section 29.4, “
 Checking SELinux Policy Enforced by Lustre Clients”

29.1.
 Using ACLs

An access control list (ACL), is a set of data that informs an
 operating system about permissions or access rights that each user or
 group has to specific system objects, such as directories or files. Each
 object has a unique security attribute that identifies users who have
 access to it. The ACL lists each object and user access privileges such as
 read, write or execute.
29.1.1. How ACLs Work

Implementing ACLs varies between operating systems. Systems that
 support the Portable Operating System Interface (POSIX) family of
 standards share a simple yet powerful file system permission model,
 which should be well-known to the Linux/UNIX administrator. ACLs add
 finer-grained permissions to this model, allowing for more complicated
 permission schemes. For a detailed explanation of ACLs on a Linux
 operating system, refer to the SUSE Labs article

 Posix Access Control Lists on Linux.
We have implemented ACLs according to this model. The Lustre
 software works with the standard Linux ACL tools, setfacl, getfacl, and
 the historical chacl, normally installed with the ACL package.
Note
ACL support is a system-range feature, meaning that all clients
 have ACL enabled or not. You cannot specify which clients should
 enable ACL.

29.1.2. Using ACLs with the Lustre Software

POSIX Access Control Lists (ACLs) can be used with the Lustre
 software. An ACL consists of file entries representing permissions based
 on standard POSIX file system object permissions that define three
 classes of user (owner, group and other). Each class is associated with
 a set of permissions [read (r), write (w) and execute (x)].
	Owner class permissions define access privileges of the file
 owner.

	Group class permissions define access privileges of the owning
 group.

	Other class permissions define access privileges of all users
 not in the owner or group class.

The ls -l command displays the owner, group, and
 other class permissions in the first column of its output (for example,
 -rw-r- -- for a regular file with read and write
 access for the owner class, read access for the group class, and no
 access for others).
Minimal ACLs have three entries. Extended ACLs have more than the
 three entries. Extended ACLs also contain a mask entry and may contain
 any number of named user and named group entries.
The MDS needs to be configured to enable ACLs. Use
 --mountfsoptions to enable ACLs when creating your
 configuration:
$ mkfs.lustre --fsname spfs --mountfsoptions=acl --mdt -mgs /dev/sda
Alternately, you can enable ACLs at run time by using the
 --acl option with mkfs.lustre:

$ mount -t lustre -o acl /dev/sda /mnt/mdt
To check ACLs on the MDS:
$ lctl get_param -n mdc.home-MDT0000-mdc-*.connect_flags | grep acl acl
To mount the client with no ACLs:
$ mount -t lustre -o noacl ibmds2@o2ib:/home /home
ACLs are enabled in a Lustre file system on a system-wide basis;
 either all clients enable ACLs or none do. Activating ACLs is controlled
 by MDS mount options acl / noacl
 (enable/disable ACLs). Client-side mount options acl/noacl are ignored.
 You do not need to change the client configuration, and the
 'acl' string will not appear in the client /etc/mtab. The
 client acl mount option is no longer needed. If a client is mounted with
 that option, then this message appears in the MDS syslog:
...MDS requires ACL support but client does not
The message is harmless but indicates a configuration issue, which
 should be corrected.
If ACLs are not enabled on the MDS, then any attempts to reference
 an ACL on a client return an Operation not supported error.

29.1.3. Examples

These examples are taken directly from the POSIX paper referenced
 above. ACLs on a Lustre file system work exactly like ACLs on any Linux
 file system. They are manipulated with the standard tools in the
 standard manner. Below, we create a directory and allow a specific user
 access.
[root@client lustre]# umask 027
[root@client lustre]# mkdir rain
[root@client lustre]# ls -ld rain
drwxr-x--- 2 root root 4096 Feb 20 06:50 rain
[root@client lustre]# getfacl rain
file: rain
owner: root
group: root
user::rwx
group::r-x
other::---

[root@client lustre]# setfacl -m user:chirag:rwx rain
[root@client lustre]# ls -ld rain
drwxrwx---+ 2 root root 4096 Feb 20 06:50 rain
[root@client lustre]# getfacl --omit-header rain
user::rwx
user:chirag:rwx
group::r-x
mask::rwx
other::---

Introduced in Lustre 2.13

29.2. Using Root Squash

Root squash is a security feature which restricts super-user access
 rights to a Lustre file system. Without the root squash feature enabled,
 Lustre file system users on untrusted clients could access or modify files
 owned by root on the file system, including deleting them. Using the root
 squash feature restricts file access/modifications as the root user to
 only the specified clients. Note, however, that this does
 not prevent users on insecure clients from accessing
 files owned by other users.
The root squash feature works by re-mapping the user ID (UID) and
 group ID (GID) of the root user to a UID and GID specified by the system
 administrator, via the Lustre configuration management server (MGS). The
 root squash feature also enables the Lustre file system administrator to
 specify a set of client for which UID/GID re-mapping does not apply.

Note
Nodemaps (Chapter 27, Mapping UIDs and GIDs with
 Nodemap) are an
		alternative to root squash, since it also allows root squash on a per-client
		basis. With UID maps, the clients can even have a local root UID without
		actually having root access to the filesystem itself.

29.2.1. Configuring Root Squash

Root squash functionality is managed by two configuration
 parameters, root_squash and
 nosquash_nids.
	The root_squash parameter specifies the UID
 and GID with which the root user accesses the Lustre file system.

	The nosquash_nids parameter specifies the set
 of clients to which root squash does not apply. LNet NID range
 syntax is used for this parameter (see the NID range syntax rules
 described in Section 29.2, “Using Root Squash”). For
 example:

nosquash_nids=172.16.245.[0-255/2]@tcp
In this example, root squash does not apply to TCP clients on subnet
 172.16.245.0 that have an even number as the last component of their IP
 address.

29.2.2. Enabling and Tuning Root Squash

The default value for nosquash_nids is NULL,
 which means that root squashing applies to all clients. Setting the root
 squash UID and GID to 0 turns root squash off.
Root squash parameters can be set when the MDT is created
 (mkfs.lustre --mdt). For example:
mds# mkfs.lustre --reformat --fsname=testfs --mdt --mgs \
 --param "mdt.root_squash=500:501" \
 --param "mdt.nosquash_nids='0@elan1 192.168.1.[10,11]'" /dev/sda1
Root squash parameters can also be changed on an unmounted device
 with tunefs.lustre. For example:
tunefs.lustre --param "mdt.root_squash=65534:65534" \
--param "mdt.nosquash_nids=192.168.0.13@tcp0" /dev/sda1

Root squash parameters can also be changed with the
 lctl conf_param command. For example:
mgs# lctl conf_param testfs.mdt.root_squash="1000:101"
mgs# lctl conf_param testfs.mdt.nosquash_nids="*@tcp"
To retrieve the current root squash parameter settings, the
 following lctl get_param commands can be used:
mgs# lctl get_param mdt.*.root_squash
mgs# lctl get_param mdt.*.nosquash_nids
Note
When using the lctl conf_param command, keep in mind:
	lctl conf_param must be run on a live MGS

	lctl conf_param causes the parameter to
 change on all MDSs

	lctl conf_param is to be used once per a
 parameter

The root squash settings can also be changed temporarily with
 lctl set_param or persistently with
 lctl set_param -P. For example:
mgs# lctl set_param mdt.testfs-MDT0000.root_squash="1:0"
mgs# lctl set_param -P mdt.testfs-MDT0000.root_squash="1:0"
The nosquash_nids list can be cleared with:
mgs# lctl conf_param testfs.mdt.nosquash_nids="NONE"
- OR -
mgs# lctl conf_param testfs.mdt.nosquash_nids="clear"
If the nosquash_nids value consists of several
 NID ranges (e.g. 0@elan, 1@elan1),
 the list of NID ranges must be quoted with single (') or double
 ('') quotation marks. List elements must be separated with a
 space. For example:
mds# mkfs.lustre ... --param "mdt.nosquash_nids='0@elan1 1@elan2'" /dev/sda1
lctl conf_param testfs.mdt.nosquash_nids="24@elan 15@elan1"
These are examples of incorrect syntax:
mds# mkfs.lustre ... --param "mdt.nosquash_nids=0@elan1 1@elan2" /dev/sda1
lctl conf_param testfs.mdt.nosquash_nids=24@elan 15@elan1
To check root squash parameters, use the lctl get_param command:

mds# lctl get_param mdt.testfs-MDT0000.root_squash
lctl get_param mdt.*.nosquash_nids
Note
An empty nosquash_nids list is reported as NONE.

29.2.3. Tips on Using Root Squash

Lustre configuration management limits root squash in several ways.

	The lctl conf_param value overwrites the
 parameter's previous value. If the new value uses an incorrect
 syntax, then the system continues with the old parameters and the
 previously-correct value is lost on remount. That is, be careful
 doing root squash tuning.

	mkfs.lustre and
 tunefs.lustre do not perform parameter syntax
 checking. If the root squash parameters are incorrect, they are
 ignored on mount and the default values are used instead.

	Root squash parameters are parsed with rigorous syntax checking.
 The root_squash parameter should be specified as
 <decnum>:<decnum>. The
 nosquash_nids parameter should follow LNet NID
 range list syntax.

LNet NID range syntax:
<nidlist> :== <nidrange> [' ' <nidrange>]
<nidrange> :== <addrrange> '@' <net>
<addrrange> :== '*' |
 <ipaddr_range> |
 <numaddr_range>
<ipaddr_range> :==
<numaddr_range>.<numaddr_range>.<numaddr_range>.<numaddr_range>
<numaddr_range> :== <number> |
 <expr_list>
<expr_list> :== '[' <range_expr> [',' <range_expr>] ']'
<range_expr> :== <number> |
 <number> '-' <number> |
 <number> '-' <number> '/' <number>
<net> :== <netname> | <netname><number>
<netname> :== "lo" | "tcp" | "o2ib"
 | "ra" | "elan"
<number> :== <nonnegative decimal> | <hexadecimal>
Note
For networks using numeric addresses (e.g. elan), the address
 range must be specified in the
 <numaddr_range> syntax. For networks using
 IP addresses, the address range must be in the
 <ipaddr_range>. For example, if elan is using
 numeric addresses, 1.2.3.4@elan is incorrect.

29.3.
 Isolating Clients to a Sub-directory Tree

Isolation is the Lustre implementation of the generic concept of
 multi-tenancy, which aims at providing separated namespaces from a single
 filesystem. Lustre Isolation enables different populations of users on
 the same file system beyond normal Unix permissions/ACLs, even when users
 on the clients may have root access. Those tenants share the same file
 system, but they are isolated from each other: they cannot access or even
 see each other’s files, and are not aware that they are sharing common
 file system resources.
Lustre Isolation leverages the Fileset feature
 (Section 43.19.4, “Fileset Feature”)
 to mount only a subdirectory of the filesystem rather than the root
 directory.
 In order to achieve isolation, the subdirectory mount, which presents to
 tenants only their own fileset, has to be imposed to the clients. To that
 extent, we make use of the nodemap feature
 (Chapter 27, Mapping UIDs and GIDs with
 Nodemap). We group all clients used by a
 tenant under a common nodemap entry, and we assign to this nodemap entry
 the fileset to which the tenant is restricted.
29.3.1. Identifying Clients

Enforcing multi-tenancy on Lustre relies on the ability to properly
 identify the client nodes used by a tenant, and trust those identities.
 This can be achieved by having physical hardware and/or network
 security, so that client nodes have well-known NIDs. It is also possible
 to make use of strong authentication with Kerberos or Shared-Secret Key
	(see Chapter 28, Configuring Shared-Secret Key
 (SSK) Security).
	Kerberos prevents NID spoofing, as every client needs its own
	credentials, based on its NID, in order to connect to the servers.
	Shared-Secret Key also prevents tenant impersonation, because keys
	can be linked to a specific nodemap. See
	Section 28.5, “Role of Nodemap in SSK” for detailed explanations.

29.3.2. Configuring Isolation

Isolation on Lustre can be achieved by setting the
 fileset parameter on a nodemap entry. All clients
	belonging to this nodemap entry will automatically mount this fileset
	instead of the root directory. For example:
mgs# lctl nodemap_set_fileset --name tenant1 --fileset '/dir1'
So all clients matching the tenant1 nodemap will
 be automatically presented the fileset /dir1 when
	mounting. This means these clients are doing an implicit subdirectory
	mount on the subdirectory /dir1.

Note

	 If subdirectory defined as fileset does not exist on the file system,
	 it will prevent any client belonging to the nodemap from mounting
	 Lustre.
	

To delete the fileset parameter, just set it to an empty string:

mgs# lctl nodemap_set_fileset --name tenant1 --fileset ''

29.3.3. Making Isolation Permanent

In order to make isolation permanent, the fileset parameter on the
 nodemap has to be set with lctl set_param with the
 -P option.
mgs# lctl set_param nodemap.tenant1.fileset=/dir1
mgs# lctl set_param -P nodemap.tenant1.fileset=/dir1
This way the fileset parameter will be stored in the Lustre config
 logs, letting the servers retrieve the information after a restart.

29.4.
 Checking SELinux Policy Enforced by Lustre Clients

SELinux provides a mechanism in Linux for supporting Mandatory Access
 Control (MAC) policies. When a MAC policy is enforced, the operating
 system’s (OS) kernel defines application rights, firewalling applications
 from compromising the entire system. Regular users do not have the ability to
 override the policy.
One purpose of SELinux is to protect the
 OS from privilege escalation. To that
 extent, SELinux defines confined and unconfined domains for processes and
 users. Each process, user, file is assigned a security context, and
 rules define the allowed operations by processes and users on files.

Another purpose of SELinux can be to protect
 data sensitivity, thanks to Multi-Level
 Security (MLS). MLS works on top of SELinux, by defining the concept of
 security levels in addition to domains. Each process, user and file is
 assigned a security level, and the model states that processes and users
 can read the same or lower security level, but can only write to their own
 or higher security level.

From a file system perspective, the security context of files must be
 stored permanently. Lustre makes use of the
 security.selinux extended attributes on files to hold
 this information. Lustre supports SELinux on the client side. All you have
 to do to have MAC and MLS on Lustre is to enforce the appropriate SELinux
 policy (as provided by the Linux distribution) on all Lustre clients. No
 SELinux is required on Lustre servers.

Because Lustre is a distributed file system, the specificity when
 using MLS is that Lustre really needs to make sure data is always accessed
 by nodes with the SELinux MLS policy properly enforced. Otherwise, data is
 not protected. This means Lustre has to check that SELinux is properly
 enforced on client side, with the right, unaltered policy. And if SELinux
 is not enforced as expected on a client, the server denies its access to
 Lustre.

29.4.1. Determining SELinux Policy Info

A string that represents the SELinux Status info will be used by
 servers as a reference, to check if clients are enforcing SELinux
	properly. This reference string can be obtained on a client node known
	to enforce the right SELinux policy, by calling the
	l_getsepol command line utility:
client# l_getsepol
SELinux status info: 1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f
The string describing the SELinux policy has the following
	 syntax:
mode:name:version:hash
where:
	mode is a digit telling if SELinux is in
	 Permissive mode (0) or Enforcing mode (1)

	name is the name of the SELinux policy
	

	version is the version of the SELinux
	 policy

	hash is the computed hash of the binary
	 representation of the policy, as exported in
	 /etc/selinux/name/policy/policy.
		version

29.4.2. Enforcing SELinux Policy Check

SELinux policy check can be enforced by setting the
 sepol parameter on a nodemap entry. All clients
	belonging to this nodemap entry must enforce the SELinux policy
	described by this parameter, otherwise they are denied access to the
	Lustre file system. For example:
mgs# lctl nodemap_set_sepol --name restricted
 --sepol '1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f'
So all clients matching the restricted nodemap
 must enforce the SELinux policy which description matches
	1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f.
	If not, they will get Permission Denied when trying to mount or access
	files on the Lustre file system.
To delete the sepol parameter, just set it to an
 empty string:
mgs# lctl nodemap_set_sepol --name restricted --sepol ''
See Chapter 27, Mapping UIDs and GIDs with
 Nodemap for more details about
 the Nodemap feature.

29.4.3. Making SELinux Policy Check
	Permanent

In order to make SELinux Policy check permanent, the sepol parameter
 on the nodemap has to be set with lctl set_param with
 the -P option.
mgs# lctl set_param nodemap.restricted.sepol=1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f
mgs# lctl set_param -P nodemap.restricted.sepol=1:mls:31:40afb76d077c441b69af58cccaaa2ca63641ed6e21b0a887dc21a684f508b78f
This way the sepol parameter will be stored in the Lustre config
 logs, letting the servers retrieve the information after a restart.

29.4.4. Sending SELinux Status Info from
	Clients

In order for Lustre clients to send their SELinux status
	information, in	case SELinux is enabled locally, the
	send_sepol ptlrpc kernel module's parameter has to be
	set to a non-zero value. send_sepol accepts various
	values:
	0: do not send SELinux policy info;

	-1: fetch SELinux policy info for every request;

	N > 0: only fetch SELinux policy info every N seconds. Use
	 N = 2^31-1 to have SELinux policy info
		fetched only at mount time.

Clients that are part of a nodemap on which
	 sepol is defined must send SELinux status info.
	 And the SELinux policy they enforce must match the representation
	 stored into the nodemap. Otherwise they will be denied access to the
	 Lustre file system.

Chapter 30. Lustre ZFS Snapshots

This chapter describes the ZFS Snapshot feature support in Lustre and
 contains following sections:
	Section 30.1, “Introduction”

	Section 30.2, “Configuration
 ”

	Section 30.3, “Snapshot Operations”

	Section 30.4, “Global Write Barriers”

	Section 30.5, “Snapshot Logs”

	Section 30.6, “Lustre Configuration Logs”

30.1. Introduction

Snapshots provide fast recovery of files from a previously created
 checkpoint without recourse to an offline backup or remote replica.
 Snapshots also provide a means to version-control storage, and can be used
 to recover lost files or previous versions of files.
Filesystem snapshots are intended to be mounted on user-accessible
 nodes, such as login nodes, so that users can restore files (e.g. after
 accidental delete or overwrite) without administrator intervention. It
 would be possible to mount the snapshot filesystem(s) via automount when
 users access them, rather than mounting all snapshots, to reduce overhead
 on login nodes when the snapshots are not in use.
Recovery of lost files from a snapshot is usually considerably
 faster than from any offline backup or remote replica. However, note that
 snapshots do not improve storage reliability and are just as exposed to
 hardware failure as any other storage volume.
30.1.1. Requirements

All Lustre server targets must be ZFS file systems running
 Lustre version 2.10 or later. In addition, the MGS must be able to
 communicate via ssh or another remote access protocol, without
 password authentication, to all other servers.
The feature is enabled by default and cannot be disabled. The
 management of snapshots is done through lctl
 commands on the MGS.
Lustre snapshot is based on Copy-On-Write; the snapshot and file
 system may share a single copy of the data until a file is changed on
 the file system. The snapshot will prevent the space of deleted or
 overwritten files from being released until the snapshot(s)
 referencing those files is deleted. The file system administrator
 needs to establish a snapshot create/backup/remove policy according to
 their system’s actual size and usage.

30.2. Configuration

The snapshot tool loads system configuration from the
 /etc/ldev.conf file on the MGS and calls related
 ZFS commands to maintian the Lustre snapshot pieces on all targets
 (MGS/MDT/OST). Please note that the /etc/ldev.conf
 file is used for other purposes as well.
The format of the file is:
<host> foreign/- <label> <device> [journal-path]/- [raidtab]
The format of <label> is:
fsname-<role><index> or <role><index>
The format of <device> is:
[md|zfs:][pool_dir/]<pool>/<filesystem>
Snapshot only uses the fields <host>, <label> and
 <device>.
Example:
mgs# cat /etc/ldev.conf
host-mdt1 - myfs-MDT0000 zfs:/tmp/myfs-mdt1/mdt1
host-mdt2 - myfs-MDT0001 zfs:myfs-mdt2/mdt2
host-ost1 - OST0000 zfs:/tmp/myfs-ost1/ost1
host-ost2 - OST0001 zfs:myfs-ost2/ost2
The configuration file is edited manually.
 Once the configuration file is updated to reflect the current
 file system setup, you are ready to create a file system snapshot.

30.3. Snapshot Operations

30.3.1. Creating a Snapshot

To create a snapshot of an existing Lustre file system, run the
 following lctl command on the MGS:
lctl snapshot_create [-b | --barrier [on | off]] [-c | --comment
comment] -F | --fsname fsname> [-h | --help] -n | --name ssname>
[-r | --rsh remote_shell][-t | --timeout timeout]
	
 Option

 	
 Description

	
 -b

 	
 set write barrier before creating snapshot. The
 default value is 'on'.

	
 -c

 	
 a description for the purpose of the snapshot

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the name of the snapshot

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

	
 -t

 	
 the lifetime (seconds) for write barrier. The
 default value is 30 seconds

30.3.2. Delete a Snapshot

To delete an existing snapshot, run the following
 lctl command on the MGS:
lctl snapshot_destroy [-f | --force] <-F | --fsname fsname>
<-n | --name ssname> [-r | --rsh remote_shell]
	
 Option

 	
 Description

	
 -f

 	
 destroy the snapshot by force

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the name of the snapshot

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

30.3.3. Mounting a Snapshot

Snapshots are treated as separate file systems and can be mounted on
 Lustre clients. The snapshot file system must be mounted as a
 read-only file system with the -o ro option.
 If the mount command does not include the read-only
 option, the mount will fail.
Note
Before a snapshot can be mounted on the client, the snapshot
 must first be mounted on the servers using the lctl
 utility.

To mount a snapshot on the server, run the following lctl command
 on the MGS:
lctl snapshot_mount <-F | --fsname fsname> [-h | --help]
<-n | --name ssname> [-r | --rsh remote_shell]
	
 Option

 	
 Description

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the name of the snapshot

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

After the successful mounting of the snapshot on the server, clients
 can now mount the snapshot as a read-only filesystem. For example, to
 mount a snapshot named snapshot_20170602 for a
 filesystem named myfs, the following mount
 command would be used:
mgs# lctl snapshot_mount -F myfs -n snapshot_20170602
After mounting on the server, use
 lctl snapshot_list to get the fsname for the snapshot
 itself as follows:
ss_fsname=$(lctl snapshot_list -F myfs -n snapshot_20170602 |
 awk '/^snapshot_fsname/ { print $2 }')
Finally, mount the snapshot on the client:
mount -t lustre -o ro $MGS_nid:/$ss_fsname $local_mount_point

30.3.4. Unmounting a Snapshot

To unmount a snapshot from the servers, first unmount the snapshot
 file system from all clients, using the standard umount
 command on each client. For example, to unmount the snapshot file system
 named snapshot_20170602 run the following
 command on each client that has it mounted:
client# umount $local_mount_point
After all clients have unmounted the snapshot file system, run the
 following lctlcommand on a server node where the
 snapshot is mounted:
lctl snapshot_umount [-F | --fsname fsname] [-h | --help]
<-n | -- name ssname> [-r | --rsh remote_shell]
	
 Option

 	
 Description

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the name of the snapshot

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

For example:
lctl snapshot_umount -F myfs -n snapshot_20170602

30.3.5. List Snapshots

To list the available snapshots for a given file system, use the
 following lctl command on the MGS:
lctl snapshot_list [-d | --detail] <-F | --fsname fsname>
[-h | -- help] [-n | --name ssname] [-r | --rsh remote_shell]
	
 Option

 	
 Description

	
 -d

 	
 list every piece for the specified snapshot

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the snapshot's name. If the snapshot name is not
 supplied, all snapshots for this file system will be
 displayed

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

30.3.6. Modify Snapshot Attributes

Currently, Lustre snapshot has five user visible attributes;
 snapshot name, snapshot comment, create time, modification time, and
 snapshot file system name. Among them, the former two attributes can be
 modified. Renaming follows the general ZFS snapshot name rules, such as
 the maximum length is 256 bytes, cannot conflict with the reserved names,
 and so on.
To modify a snapshot’s attributes, use the following
 lctl command on the MGS:
lctl snapshot_modify [-c | --comment comment]
<-F | --fsname fsname> [-h | --help] <-n | --name ssname>
[-N | --new new_ssname] [-r | --rsh remote_shell]
	
 Option

 	
 Description

	
 -c

 	
 update the snapshot's comment

	
 -F

 	
 the filesystem name

	
 -h

 	
 help information

	
 -n

 	
 the snapshot's name

	
 -N

 	
 rename the snapshot's name as
 new_ssname

	
 -r

 	
 the remote shell used for communication with
 remote target. The default value is 'ssh'

30.4. Global Write Barriers

Snapshots are non-atomic across multiple MDTs and OSTs, which means
 that if there is activity on the file system while a snapshot is being
 taken, there may be user-visible namespace inconsistencies with files
 created or destroyed in the interval between the MDT and OST snapshots.
 In order to create a consistent snapshot of the file system, we are able
 to set a global write barrier, or “freeze” the system. Once set, all
 metadata modifications will be blocked until the write barrier is actively
 removed (“thawed”) or expired. The user can set a timeout parameter on a
 global barrier or the barrier can be explicitly removed. The default
 timeout period is 30 seconds.
It is important to note that snapshots are usable without the global
 barrier. Only files that are currently being modified by clients (write,
 create, unlink) may be inconsistent as noted above if the barrier is not
 used. Other files not curently being modified would be usable even
 without the barrier.
The snapshot create command will call the write barrier internally
 when requested using the -b option to
 lctl snapshot_create. So, explicit use of the barrier
 is not required when using snapshots but included here as an option to
 quiet the file system before a snapshot is created.
30.4.1. Impose Barrier

To impose a global write barrier, run the
 lctl barrier_freeze command on the MGS:
lctl barrier_freeze <fsname> [timeout (in seconds)]
where timeout default is 30.
For example, to freeze the filesystem
 testfs for 15 seconds:

mgs# lctl barrier_freeze testfs 15
If the command is successful, there will be no output from
 the command. Otherwise, an error message will be printed.

30.4.2. Remove Barrier

To remove a global write barrier, run the
 lctl barrier_thaw command on the MGS:
lctl barrier_thaw <fsname>
For example, to thaw the write barrier for the filesystem
 testfs:

mgs# lctl barrier_thaw testfs
If the command is successful, there will be no output from
 the command. Otherwise, an error message will be printed.

30.4.3. Query Barrier

To see how much time is left on a global write barrier, run the
 lctl barrier_stat command on the MGS:
lctl barrier_stat <fsname>
For example, to stat the write barrier for the filesystem
 testfs:

mgs# lctl barrier_stat testfs
The barrier for testfs is in 'frozen'
The barrier will be expired after 7 seconds
If the command is successful, a status from the table below
 will be printed. Otherwise, an error message will be printed.
The possible status and related meanings for the write barrier
 are as follows:
Table 30.1. Write Barrier Status
	
 Status

 	
 Meaning

	
 init

 	
 barrier has never been set on the system

	
 freezing_p1

 	
 In the first stage of setting the write
 barrier

	
 freezing_p2

 	
 the second stage of setting the write
 barrier

	
 frozen

 	
 the write barrier has been set successfully

	
 thawing

 	
 In thawing the write barrier

	
 thawed

 	
 The write barrier has been thawed

	
 failed

 	
 Failed to set write barrier

	
 expired

 	
 The write barrier is expired

	
 rescan

 	
 In scanning the MDTs status, see the command
 barrier_rescan

	
 unknown

 	
 Other cases

If the barrier is in ’freezing_p1’, ’freezing_p2’ or ’frozen’
 status, then the remaining lifetime will be returned also.

30.4.4. Rescan Barrier

 To rescan a global write barrier to check which MDTs are
 active, run the lctl barrier_rescan command on the
 MGS:
lctl barrier_rescan <fsname> [timeout (in seconds)],
where the default timeout is 30 seconds.
For example, to rescan the barrier for filesystem
 testfs:
mgs# lctl barrier_rescan testfs
1 of 4 MDT(s) in the filesystem testfs are inactive
If the command is successful, the number of MDTs that are
 unavailable against the total MDTs will be reported. Otherwise, an
 error message will be printed.

30.5. Snapshot Logs

A log of all snapshot activity can be found in the following file:
 /var/log/lsnapshot.log. This file contains information
 on when a snapshot was created, an attribute was changed, when it was
 mounted, and other snapshot information.
The following is a sample /var/log/lsnapshot
 file:
Mon Mar 21 19:43:06 2016
(15826:jt_snapshot_create:1138:scratch:ssh): Create snapshot lss_0_0
successfully with comment <(null)>, barrier <enable>, timeout <30>
Mon Mar 21 19:43:11 2016(13030:jt_snapshot_create:1138:scratch:ssh):
Create snapshot lss_0_1 successfully with comment <(null)>, barrier
<disable>, timeout <-1>
Mon Mar 21 19:44:38 2016 (17161:jt_snapshot_mount:2013:scratch:ssh):
The snapshot lss_1a_0 is mounted
Mon Mar 21 19:44:46 2016
(17662:jt_snapshot_umount:2167:scratch:ssh): the snapshot lss_1a_0
have been umounted
Mon Mar 21 19:47:12 2016
(20897:jt_snapshot_destroy:1312:scratch:ssh): Destroy snapshot
lss_2_0 successfully with force <disable>

30.6. Lustre Configuration Logs

A snapshot is independent from the original file system that it is
 derived from and is treated as a new file system name that can be mounted
 by Lustre client nodes. The file system name is part of the configuration
 log names and exists in configuration log entries. Two commands exist to
 manipulate configuration logs: lctl fork_lcfg and
 lctl erase_lcfg.
The snapshot commands will use configuration log functionality
 internally when needed. So, use of the barrier is not required to use
 snapshots but included here as an option. The following configuration log
 commands are independent of snapshots and can be used independent of
 snapshot use.
To fork a configuration log, run the following
 lctl command on the MGS:
lctl fork_lcfg
Usage: fork_lcfg <fsname> <newname>
To erase a configuration log, run the following
 lctl command on the MGS:
lctl erase_lcfg
Usage: erase_lcfg <fsname>

Chapter 31. Testing Lustre Network Performance (LNet Self-Test)

This chapter describes the LNet
 self-test, which is used by site administrators to confirm that Lustre Networking (LNet) has
 been properly installed and configured, and that underlying network software and hardware are
 performing according to expectations. The chapter includes:
	Section 31.1, “
LNet Self-Test Overview”

	Section 31.2, “Using LNet Self-Test”

	Section 31.3, “LNet Self-Test Command Reference”

31.1.
LNet Self-Test Overview

LNet self-test is a kernel module that runs over LNet and the Lustre network drivers (LNDs). It is designed to:
	Test the connection ability of the Lustre network

	Run regression tests of the Lustre network

	Test performance of the Lustre network

After you have obtained performance results for your Lustre network, refer to Chapter 33, Tuning a Lustre File System for information about parameters that can be used to tune LNet for optimum performance.
Note
Apart from the performance impact, LNet self-test is invisible to the Lustre file
 system.

An LNet self-test cluster includes two types of nodes:
	Console node - A node used to control and monitor an LNet self-test cluster. The console node serves as the user interface of the LNet self-test system and can be any node in the test cluster. All self-test commands are entered from the console node. From the console node, a user can control and monitor the status of the entire LNet self-test cluster (session). The console node is exclusive in that a user cannot control two different sessions from one console node.

	Test nodes - The nodes on which the tests are run. Test nodes are controlled by the user from the console node; the user does not need to log into them directly.

LNet self-test has two user utilities:
	
 lst
 - The user interface for the self-test console (run on the console node). It provides a list of commands to control the entire test system, including commands to create a session, create test groups, etc.

	
 lstclient
 - The userspace LNet self-test program (run on a test node). The lstclient utility is linked with userspace LNDs and LNet. This utility is not needed if only kernel space LNet and LNDs are used.

Note
Test nodes can be in either kernel or userspace. A console node can invite a kernel test node to join the session by running lst add_group NID, but the console node cannot actively add a userspace test node to the session. A console node can passively accept a test node to the session while the test node is running lstclient to connect to the console node.

31.1.1. Prerequisites

To run LNet self-test, these modules must be loaded on both console nodes and test nodes:
	libcfs

	net

	lnet_selftest

	klnds: A kernel Lustre network driver (LND) (i.e, ksocklnd, ko2iblnd...) as needed by your network configuration.

To load the required modules, run:
modprobe lnet_selftest
This command recursively loads the modules on which LNet self-test depends.
Note
While the console node and test nodes require all the prerequisite modules to be loaded, userspace test nodes do not require these modules.

31.2. Using LNet Self-Test

This section describes how to create and run an LNet self-test. The examples shown are for a test that simulates the traffic pattern of a set of Lustre servers on a TCP network accessed by Lustre clients on an InfiniBand network connected via LNet routers. In this example, half the clients are reading and half the clients are writing.
31.2.1. Creating a Session

A session is a set of processes that run on a test node. Only one session can be run at a time on a test node to ensure that the session has exclusive use of the node. The console node is used to create, change or destroy a session (new_session, end_session, show_session). For more about session parameters, see Section 31.3.1, “Session Commands”.
Almost all operations should be performed within the context of a session. From the console node, a user can only operate nodes in his own session. If a session ends, the session context in all test nodes is stopped.
The following commands set the LST_SESSION environment variable to identify the session on the console node and create a session called read_write:
export LST_SESSION=$$
lst new_session read_write

31.2.2. Setting Up Groups

A group is a named collection of nodes. Any number of groups can exist in a single LNet self-test session. Group membership is not restricted in that a test node can be included in any number of groups.
Each node in a group has a rank, determined by the order in which it was added to the group. The rank is used to establish test traffic patterns.
A user can only control nodes in his/her session. To allocate nodes to the session, the user needs to add nodes to a group (of the session). All nodes in a group can be referenced by the group name. A node can be allocated to multiple groups of a session.
In the following example, three groups are established on a console node:
lst add_group servers 192.168.10.[8,10,12-16]@tcp
lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib
These three groups include:
	Nodes that will function as 'servers' to be accessed by 'clients' during the LNet self-test session

	Nodes that will function as 'clients' that will simulate reading data from the 'servers'

	Nodes that will function as 'clients' that will simulate writing data to the 'servers'

Note
A console node can associate kernel space test nodes with the session by running lst add_group NIDs, but a userspace test node cannot be actively added to the session. A console node can passively "accept" a test node to associate with a test session while the test node running lstclient connects to the console node, i.e: lstclient --sesid CONSOLE_NID --group NAME).

31.2.3. Defining and Running the Tests

A test generates a network load between two groups of nodes, a
 source group identified using the --from parameter and a target group
 identified using the --to parameter. When a test is running, each node in
 the --from group simulates a client by sending
 requests to nodes in the --to group, which are
 simulating a set of servers, and then receives responses in return. This activity is
 designed to mimic Lustre file system RPC traffic.
A batch is a collection of tests that are started and stopped together and run in parallel. A test must always be run as part of a batch, even if it is just a single test. Users can only run or stop a test batch, not individual tests.
Tests in a batch are non-destructive to the file system, and can be run in a normal
 Lustre file system environment (provided the performance impact is acceptable).
A simple batch might contain a single test, for example, to determine whether the network bandwidth presents an I/O bottleneck. In this example, the --to group could be comprised of Lustre OSSs and --from group the compute nodes. A second test could be added to perform pings from a login node to the MDS to see how checkpointing affects the ls -l process.
Two types of tests are available:
	ping - A ping generates a short request message, which results in a short response. Pings are useful to determine latency and small message overhead and to simulate Lustre metadata traffic.

	brw - In a brw ('bulk read write') test, data is transferred from the target to the source (brwread) or data is transferred from the source to the target (brwwrite). The size of the bulk transfer is set using the size parameter. A brw test is useful to determine network bandwidth and to simulate Lustre I/O traffic.

In the example below, a batch is created called bulk_rw. Then two brw tests are added. In the first test, 1M of data is sent from the servers to the clients as a simulated read operation with a simple data validation check. In the second test, 4K of data is sent from the clients to the servers as a simulated write operation with a full data validation check.
lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers \
 brw read check=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers \
 brw write check=full size=4K
The traffic pattern and test intensity is determined by several properties such as test type, distribution of test nodes, concurrency of test, and RDMA operation type. For more details, see Section 31.3.3, “Batch and Test Commands”.

31.2.4. Sample Script

This sample LNet self-test script simulates the traffic pattern of a set of Lustre servers on a TCP network, accessed by Lustre clients on an InfiniBand network (connected via LNet routers). In this example, half the clients are reading and half the clients are writing.
Run this script on the console node:
#!/bin/bash
export LST_SESSION=$$
lst new_session read/write
lst add_group servers 192.168.10.[8,10,12-16]@tcp
lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib
lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers \
brw read check=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers \
brw write check=full size=4K
start running
lst run bulk_rw
display server stats for 30 seconds
lst stat servers & sleep 30; kill $!
tear down
lst end_session
Note
This script can be easily adapted to pass the group NIDs by shell variables or command line arguments (making it good for general-purpose use).

31.3. LNet Self-Test Command Reference

The LNet self-test (lst) utility is used to issue LNet self-test commands. The lst utility takes a number of command line arguments. The first argument is the command name and subsequent arguments are command-specific.
31.3.1. Session Commands

This section describes lst session commands.

 LST_FEATURES

The lst utility uses the LST_FEATURES environmental variable to determine what optional features should be enabled. All features are disabled by default. The supported values for LST_FEATURES are:
	1 - Enable the Variable Page Size feature for LNet Selftest.

Example:
export LST_FEATURES=1

 LST_SESSION

The lst utility uses the LST_SESSION environmental variable to identify the session locally on the self-test console node. This should be a numeric value that uniquely identifies all session processes on the node. It is convenient to set this to the process ID of the shell both for interactive use and in shell scripts. Almost all lst commands require LST_SESSION to be set.
Example:
export LST_SESSION=$$

 new_session [--timeout SECONDS] [--force] SESSNAME

Creates a new session session named SESSNAME.
	
 Parameter

 	
 Description

	
 --timeout seconds

 	
 Console timeout value of the session. The session ends automatically if it remains idle (i.e., no commands are issued) for this period.

	
 --force

 	
 Ends conflicting sessions. This determines who 'wins' when one session conflicts with another. For example, if there is already an active session on this node, then the attempt to create a new session fails unless the --force flag is specified. If the --force flag is specified, then the active session is ended. Similarly, if a session attempts to add a node that is already 'owned' by another session, the --force flag allows this session to 'steal' the node.

	
 name

 	
 A human-readable string to print when listing sessions or reporting session conflicts.

Example:
$ lst new_session --force read_write
end_session
Stops all operations and tests in the current session and clears the session's status.
$ lst end_session
show_session
Shows the session information. This command prints information about the current session. It does not require LST_SESSION to be defined in the process environment.
$ lst show_session

31.3.2. Group Commands

This section describes lst group commands.
add_group name NIDS [NIDs...]
Creates the group and adds a list of test nodes to the group.
	
 Parameter

 	
 Description

	
 name

 	
 Name of the group.

	
 NIDs

 	
 A string that may be expanded to include one or more LNet NIDs.

Example:
$ lst add_group servers 192.168.10.[35,40-45]@tcp
$ lst add_group clients 192.168.1.[10-100]@tcp 192.168.[2,4].\
 [10-20]@tcp
update_group name [--refresh] [--clean status] [--remove NIDs]
Updates the state of nodes in a group or adjusts a group's membership. This command is useful if some nodes have crashed and should be excluded from the group.
	
 Parameter

 	
 Description

	

 --refresh

 	
 Refreshes the state of all inactive nodes in the group.

	
 --clean status

 	
 Removes nodes with a specified status from the group. Status may be:

	

 	
 active

 	
 The node is in the current session.

	

 	
 busy

 	
 The node is now owned by another session.

	

 	
 down

 	
 The node has been marked down.

	

 	
 unknown

 	
 The node's status has yet to be determined.

	

 	
 invalid

 	
 Any state but active.

	
 --remove NIDs

 	
 Removes specified nodes from the group.

Example:
$ lst update_group clients --refresh
$ lst update_group clients --clean busy
$ lst update_group clients --clean invalid // \
 invalid == busy || down || unknown
$ lst update_group clients --remove \192.168.1.[10-20]@tcp
 list_group [name] [--active] [--busy] [--down] [--unknown] [--all]
Prints information about a group or lists all groups in the current session if no group is specified.
	
 Parameter

 	
 Description

	
 name

 	
 The name of the group.

	

 --active

 	
 Lists the active nodes.

	

 --busy

 	
 Lists the busy nodes.

	
 --down
 	
 Lists the down nodes.

	
 --unknown
 	
 Lists unknown nodes.

	
 --all
 	
 Lists all nodes.

Example:
$ lst list_group
1) clients
2) servers
Total 2 groups
$ lst list_group clients
ACTIVE BUSY DOWN UNKNOWN TOTAL
3 1 2 0 6
$ lst list_group clients --all
192.168.1.10@tcp Active
192.168.1.11@tcp Active
192.168.1.12@tcp Busy
192.168.1.13@tcp Active
192.168.1.14@tcp DOWN
192.168.1.15@tcp DOWN
Total 6 nodes
$ lst list_group clients --busy
192.168.1.12@tcp Busy
Total 1 node
del_group name
Removes a group from the session. If the group is referred to by any test, then the operation fails. If nodes in the group are referred to only by this group, then they are kicked out from the current session; otherwise, they are still in the current session.
$ lst del_group clients
lstclient --sesid NID --group name [--server_mode]
Use lstclient to run the userland self-test client. The lstclient command should be executed after creating a session on the console. There are only two mandatory options for lstclient:
	
 Parameter

 	
 Description

	
 --sesid NID
 	
 The first console's NID.

	
 --group name
 	
 The test group to join.

	
 --server_mode
 	
 When included, forces LNet to behave as a server, such as starting an acceptor if the underlying NID needs it or using privileged ports. Only root is allowed to use the --server_mode option.

Example:
Console $ lst new_session testsession
Client1 $ lstclient --sesid 192.168.1.52@tcp --group clients
Example:
Client1 $ lstclient --sesid 192.168.1.52@tcp |--group clients --server_mode

31.3.3. Batch and Test Commands

This section describes lst batch and test commands.
add_batch name
A default batch test set named batch is created when the session is started. You can specify a batch name by using add_batch:
$ lst add_batch bulkperf
Creates a batch test called bulkperf.

add_test --batch batchname [--loop loop_count] [--concurrency active_count] [--distribute source_count:sink_count] \
 --from group --to group brw|ping test_options

Adds a test to a batch. The parameters are described below.
	
 Parameter

 	
 Description

	
 --batch batchname

 	
 Names a group of tests for later execution.

	
 --loop loop_count
 	
 Number of times to run the test.

	
 --concurrency active_count
 	
 The number of requests that are active at one time.

	
 --distribute source_count:sink_count
 	
 Determines the ratio of client nodes to server nodes for the specified test. This allows you to specify a wide range of topologies, including one-to-one and all-to-all. Distribution divides the source group into subsets, which are paired with equivalent subsets from the target group so only nodes in matching subsets communicate.

	
 --from group
 	
 The source group (test client).

	
 --to group
 	
 The target group (test server).

	
 ping
 	
 Sends a small request message, resulting in a small reply message. For more details, see Section 31.2.3, “Defining and Running the Tests”. ping does not have any additional options.

	
 brw
 	
 Sends a small request message followed by a bulk data transfer, resulting in a small reply message. Section 31.2.3, “Defining and Running the Tests”. Options are:

	

 	
 read | write
 	
 Read or write. The default is read.

	 	
 size=bytes[KM]
 	
 I/O size in bytes, kilobytes, or Megabytes (i.e., size=1024, size=4K, size=1M). The default is 4 kilobytes.

	 	
 check=full|simple
 	
 A data validation check (checksum of data). The default is that no check is done.

Examples showing use of the distribute parameter:
Clients: (C1, C2, C3, C4, C5, C6)
Server: (S1, S2, S3)
--distribute 1:1 (C1->S1), (C2->S2), (C3->S3), (C4->S1), (C5->S2),
\(C6->S3) /* -> means test conversation */ --distribute 2:1 (C1,C2->S1), (C3,C4->S2), (C5,C6->S3)
--distribute 3:1 (C1,C2,C3->S1), (C4,C5,C6->S2), (NULL->S3)
--distribute 3:2 (C1,C2,C3->S1,S2), (C4,C5,C6->S3,S1)
--distribute 4:1 (C1,C2,C3,C4->S1), (C5,C6->S2), (NULL->S3)
--distribute 4:2 (C1,C2,C3,C4->S1,S2), (C5, C6->S3, S1)
--distribute 6:3 (C1,C2,C3,C4,C5,C6->S1,S2,S3)
The setting --distribute 1:1 is the default setting where each source node communicates with one target node.
When the setting --distribute 1: n (where n is the size of the target group) is used, each source node communicates with every node in the target group.
Note that if there are more source nodes than target nodes, some source nodes may share the same target nodes. Also, if there are more target nodes than source nodes, some higher-ranked target nodes will be idle.
Example showing a brw test:
$ lst add_group clients 192.168.1.[10-17]@tcp
$ lst add_group servers 192.168.10.[100-103]@tcp
$ lst add_batch bulkperf
$ lst add_test --batch bulkperf --loop 100 --concurrency 4 \
 --distribute 4:2 --from clients brw WRITE size=16K
In the example above, a batch test called bulkperf that will do a 16 kbyte bulk write request. In this test, two groups of four clients (sources) write to each of four servers (targets) as shown below:
	 192.168.1.[10-13] will write to 192.168.10.[100,101]

	 192.168.1.[14-17] will write to 192.168.10.[102,103]

 list_batch [name] [--test index] [--active] [--invalid] [--server|client]

Lists batches in the current session or lists client and server nodes in a batch or a test.
	
 Parameter

 	
 Description

	
 --test index
 	
 Lists tests in a batch. If no option is used, all tests in the batch are listed. If one of these options are used, only specified tests in the batch are listed:

	

 	
 active

 	
 Lists only active batch tests.

	

 	
 invalid

 	
 Lists only invalid batch tests.

	

 	
 server | client
 	
 Lists client and server nodes in a batch test.

Example:
$ lst list_batchbulkperf
$ lst list_batch bulkperf
Batch: bulkperf Tests: 1 State: Idle
ACTIVE BUSY DOWN UNKNOWN TOTAL
client 8 0 0 0 8
server 4 0 0 0 4
Test 1(brw) (loop: 100, concurrency: 4)
ACTIVE BUSY DOWN UNKNOWN TOTAL
client 8 0 0 0 8
server 4 0 0 0 4
$ lst list_batch bulkperf --server --active
192.168.10.100@tcp Active
192.168.10.101@tcp Active
192.168.10.102@tcp Active
192.168.10.103@tcp Active

 run
 name

Runs the batch.
$ lst run bulkperf

 stop
 name

Stops the batch.
$ lst stop bulkperf

 query
 name
 [--test index]
 [--timeout seconds]
 [--loop loopcount]
 [--delay seconds]
 [--all]

Queries the batch status.
	
 Parameter

 	
 Description

	
 --test index
 	
 Only queries the specified test. The test index starts from 1.

	
 --timeout seconds
 	
 The timeout value to wait for RPC. The default is 5 seconds.

	
 --loop #
 	
 The loop count of the query.

	
 --delay seconds
 	
 The interval of each query. The default is 5 seconds.

	
 --all
 	
 The list status of all nodes in a batch or a test.

Example:
$ lst run bulkperf
$ lst query bulkperf --loop 5 --delay 3
Batch is running
Batch is running
Batch is running
Batch is running
Batch is running
$ lst query bulkperf --all
192.168.1.10@tcp Running
192.168.1.11@tcp Running
192.168.1.12@tcp Running
192.168.1.13@tcp Running
192.168.1.14@tcp Running
192.168.1.15@tcp Running
192.168.1.16@tcp Running
192.168.1.17@tcp Running
$ lst stop bulkperf
$ lst query bulkperf
Batch is idle

31.3.4. Other Commands

This section describes other lst commands.

 ping [-session] [--group name]
 [--nodes NIDs]
 [--batch name]
 [--server]
 [--timeout seconds]

Sends a 'hello' query to the nodes.
	
 Parameter

 	
 Description

	
 --session
 	
 Pings all nodes in the current session.

	
 --group name
 	
 Pings all nodes in a specified group.

	
 --nodes NIDs
 	
 Pings all specified nodes.

	
 --batch name
 	
 Pings all client nodes in a batch.

	
 --server
 	
 Sends RPC to all server nodes instead of client nodes. This option is only used with --batch name.

	
 --timeout seconds
 	
 The RPC timeout value.

Example:
lst ping 192.168.10.[15-20]@tcp
192.168.1.15@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.16@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.17@tcp Active [session: liang id: 192.168.1.3@tcp]
192.168.1.18@tcp Busy [session: Isaac id: 192.168.10.10@tcp]
192.168.1.19@tcp Down [session: <NULL> id: LNET_NID_ANY]
192.168.1.20@tcp Down [session: <NULL> id: LNET_NID_ANY]

 stat [--bw] [--rate] [--read] [--write] [--max] [--min] [--avg] " "
 [--timeout seconds]
 [--delay seconds]
 group|NIDs
 [group|NIDs]

The collection performance and RPC statistics of one or more nodes.
	
 Parameter

 	
 Description

	
 --bw
 	
 Displays the bandwidth of the specified group/nodes.

	
 --rate
 	
 Displays the rate of RPCs of the specified group/nodes.

	
 --read
 	
 Displays the read statistics of the specified group/nodes.

	
 --write
 	
 Displays the write statistics of the specified group/nodes.

	
 --max
 	
 Displays the maximum value of the statistics.

	
 --min
 	
 Displays the minimum value of the statistics.

	
 --avg
 	
 Displays the average of the statistics.

	
 --timeout seconds
 	
 The timeout of the statistics RPC. The default is 5 seconds.

	
 --delay seconds
 	
 The interval of the statistics (in seconds).

Example:
$ lst run bulkperf
$ lst stat clients
[LNet Rates of clients]
[W] Avg: 1108 RPC/s Min: 1060 RPC/s Max: 1155 RPC/s
[R] Avg: 2215 RPC/s Min: 2121 RPC/s Max: 2310 RPC/s
[LNet Bandwidth of clients]
[W] Avg: 16.60 MB/s Min: 16.10 MB/s Max: 17.1 MB/s
[R] Avg: 40.49 MB/s Min: 40.30 MB/s Max: 40.68 MB/s
Specifying a group name (
 group
) causes statistics to be gathered for all nodes in a test group. For example:
$ lst stat servers

where servers is the name of a test group created by lst add_group
Specifying a NID range (NIDs) causes statistics to be gathered for selected nodes. For example:
$ lst stat 192.168.0.[1-100/2]@tcp
Only LNet performance statistics are available. By default, all statistics
information is displayed. Users can specify additional information with these options.
show_error [--session] [group|NIDs]...
Lists the number of failed RPCs on test nodes.
	
 Parameter

 	
 Description

	
 --session
 	
 Lists errors in the current test session. With this option, historical RPC errors are not listed.

Example:
$ lst show_error client
sclients
12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors] \
 [RPC: 20 errors, 0 dropped,
12345-192.168.1.16@tcp: [Session: 0 brw errors, 0 ping errors] \
 [RPC: 1 errors, 0 dropped, Total 2 error nodes in clients
$ lst show_error --session clients
clients
12345-192.168.1.15@tcp: [Session: 1 brw errors, 0 ping errors]
Total 1 error nodes in clients

Chapter 32. Benchmarking Lustre File System Performance (Lustre I/O
 Kit)

This chapter describes the Lustre I/O kit, a collection of I/O
 benchmarking tools for a Lustre cluster. It includes:
	Section 32.1, “

 Using Lustre I/O Kit Tools”

	Section 32.2, “Testing I/O Performance of Raw Hardware (sgpdd-survey)”

	Section 32.3, “Testing OST Performance (obdfilter-survey)”

	Section 32.4, “Testing OST I/O Performance (ost-survey)”

	Section 32.5, “Testing MDS Performance (mds-survey)”

	Section 32.6, “Collecting Application Profiling Information (stats-collect)”

32.1.

 Using Lustre I/O Kit Tools

The tools in the Lustre I/O Kit are used to benchmark Lustre file system hardware and
 validate that it is working as expected before you install the Lustre software. It can also be
 used to to validate the performance of the various hardware and software layers in the cluster
 and also to find and troubleshoot I/O issues.
Typically, performance is measured starting with single raw devices and then proceeding to groups of devices. Once raw performance has been established, other software layers are then added incrementally and tested.
32.1.1. Contents of the Lustre I/O Kit

The I/O kit contains three tests, each of which tests a progressively higher layer in
 the Lustre software stack:
	sgpdd-survey - Measure basic 'bare metal' performance
 of devices while bypassing the kernel block device layers, buffer cache, and file
 system.

	obdfilter-survey - Measure the performance of one or more OSTs
 directly on the OSS node or alternately over the network from a Lustre client.

	ost-survey - Performs I/O against OSTs individually to allow
 performance comparisons to detect if an OST is performing sub-optimally due to hardware
 issues.

Typically with these tests, a Lustre file system should deliver 85-90% of the raw device
 performance.
A utility stats-collect is also provided to collect application profiling information from Lustre clients and servers. See Section 32.6, “Collecting Application Profiling Information (stats-collect)” for more information.

32.1.2. Preparing to Use the Lustre I/O Kit

The following prerequisites must be met to use the tests in the Lustre I/O kit:
	Password-free remote access to nodes in the system (provided by ssh or rsh).

	LNet self-test completed to test that Lustre networking has been properly installed
 and configured. See Chapter 31, Testing Lustre Network Performance (LNet Self-Test).

	Lustre file system software installed.

	sg3_utils package providing the sgp_dd tool (sg3_utils is a separate RPM package available online using YUM).

Download the Lustre I/O kit (lustre-iokit)from:
http://downloads.whamcloud.com/

32.2. Testing I/O Performance of Raw Hardware (sgpdd-survey)

The sgpdd-survey tool is used to test bare metal I/O performance of the
 raw hardware, while bypassing as much of the kernel as possible. This survey may be used to
 characterize the performance of a SCSI device by simulating an OST serving multiple stripe
 files. The data gathered by this survey can help set expectations for the performance of a
 Lustre OST using this device.
The script uses sgp_dd to carry out raw sequential disk I/O. It runs with variable numbers of sgp_dd threads to show how performance varies with different request queue depths.
The script spawns variable numbers of sgp_dd instances, each reading or writing a separate area of the disk to demonstrate performance variance within a number of concurrent stripe files.
Several tips and insights for disk performance measurement are described below. Some of this information is specific to RAID arrays and/or the Linux RAID implementation.
	Performance is limited by the slowest disk.
Before creating a RAID array, benchmark all disks individually. We have frequently encountered situations where drive performance was not consistent for all devices in the array. Replace any disks that are significantly slower than the rest.

	Disks and arrays are very sensitive to request size.
To identify the optimal request size for a given disk, benchmark the disk with different record sizes ranging from 4 KB to 1 to 2 MB.

Caution
The sgpdd-survey script overwrites the device being tested, which
 results in the
 LOSS OF ALL DATA
 on that device. Exercise caution when selecting the device to be tested.

Note
Array performance with all LUNs loaded does not always match the performance of a single LUN when tested in isolation.

Prerequisites:
	sgp_dd tool in the sg3_utils package

	Lustre software is NOT required

The device(s) being tested must meet one of these two requirements:
	If the device is a SCSI device, it must appear in the output of sg_map (make sure the kernel module sg is loaded).

	If the device is a raw device, it must appear in the output of raw -qa.

Raw and SCSI devices cannot be mixed in the test specification.
Note
If you need to create raw devices to use the sgpdd-survey tool, note
 that raw device 0 cannot be used due to a bug in certain versions of the "raw"
 utility (including the version shipped with Red Hat Enterprise Linux 4U4.)

32.2.1. Tuning Linux Storage Devices

To get large I/O transfers (1 MB) to disk, it may be necessary to tune several kernel parameters as specified:
/sys/block/sdN/queue/max_sectors_kb = 4096
/sys/block/sdN/queue/max_phys_segments = 256
/proc/scsi/sg/allow_dio = 1
/sys/module/ib_srp/parameters/srp_sg_tablesize = 255
/sys/block/sdN/queue/scheduler
Note
Recommended schedulers are deadline and noop. The scheduler is set by default to deadline, unless it has already been set to noop.

32.2.2. Running sgpdd-survey

The sgpdd-survey script must be customized for the particular device
 being tested and for the location where the script saves its working and result files (by
 specifying the ${rslt} variable). Customization variables are described
 at the beginning of the script.
When the sgpdd-survey script runs, it creates a number of working
 files and a pair of result files. The names of all the files created start with the prefix
 defined in the variable ${rslt}. (The default value is
 /tmp.) The files include:
	File containing standard output data (same as stdout)
rslt_date_time.summary

	Temporary (tmp) files
rslt_date_time_*

	Collected tmp files for post-mortem
rslt_date_time.detail

The stdout and the .summary file will contain lines like this:
total_size 8388608K rsz 1024 thr 1 crg 1 180.45 MB/s 1 x 180.50 \
 = 180.50 MB/s

Each line corresponds to a run of the test. Each test run will have a different number of threads, record size, or number of regions.
	total_size - Size of file being tested in KBs (8 GB in above example).

	rsz - Record size in KBs (1 MB in above example).

	thr - Number of threads generating I/O (1 thread in above example).

	crg - Current regions, the number of disjoint areas on the disk to which I/O is being sent (1 region in above example, indicating that no seeking is done).

	MB/s - Aggregate bandwidth measured by dividing the total amount of data by the elapsed time (180.45 MB/s in the above example).

	MB/s - The remaining numbers show the number of regions X performance of the slowest disk as a sanity check on the aggregate bandwidth.

If there are so many threads that the sgp_dd script is unlikely to be able to allocate I/O buffers, then ENOMEM is printed in place of the aggregate bandwidth result.
If one or more sgp_dd instances do not successfully report a bandwidth number, then FAILED is printed in place of the aggregate bandwidth result.

32.3. Testing OST Performance (obdfilter-survey)

The obdfilter-survey script generates sequential I/O from varying
 numbers of threads and objects (files) to simulate the I/O patterns of a Lustre client.
The obdfilter-survey script can be run directly on the OSS node to
 measure the OST storage performance without any intervening network, or it can be run remotely
 on a Lustre client to measure the OST performance including network overhead.
The obdfilter-survey is used to characterize the performance of the
 following:
	Local file system - In this mode, the
 obdfilter-survey script exercises one or more instances of the
 obdfilter directly. The script may run on one or more OSS nodes, for example, when the
 OSSs are all attached to the same multi-ported disk subsystem.
Run the script using the case=disk parameter to run the test against all the local OSTs. The script automatically detects all local OSTs and includes them in the survey.
To run the test against only specific OSTs, run the script using the targets=parameter to list the OSTs to be tested explicitly. If some OSTs are on remote nodes, specify their hostnames in addition to the OST name (for example, oss2:lustre-OST0004).
All obdfilter instances are driven directly. The script automatically loads the obdecho module (if required) and creates one instance of echo_client for each obdfilter instance in order to generate I/O requests directly to the OST.
For more details, see Section 32.3.1, “Testing Local Disk Performance”.

	Network - In this mode, the Lustre client generates I/O requests over the network but these requests are not sent to the OST file system. The OSS node runs the obdecho server to receive the requests but discards them before they are sent to the disk.
Pass the parameters case=network and targets=hostname|IP_of_server to the script. For each network case, the script does the required setup.
For more details, see Section 32.3.2, “Testing Network Performance”

	Remote file system over the network - In this mode
 the obdfilter-survey script generates I/O from a Lustre client to a
 remote OSS to write the data to the file system.
To run the test against all the local OSCs, pass the parameter case=netdisk to the script. Alternately you can pass the target= parameter with one or more OSC devices (e.g., lustre-OST0000-osc-ffff88007754bc00) against which the tests are to be run.
For more details, see Section 32.3.3, “Testing Remote Disk Performance”.

Caution
The obdfilter-survey script is potentially destructive and there is a
 small risk data may be lost. To reduce this risk, obdfilter-survey should
 not be run on devices that contain data that needs to be preserved. Thus, the best time to
 run obdfilter-survey is before the Lustre file system is put into
 production. The reason obdfilter-survey may be safe to run on a
 production file system is because it creates objects with object sequence 2. Normal file
 system objects are typically created with object sequence 0.

Note
If the obdfilter-survey test is terminated before it completes, some
 small amount of space is leaked. you can either ignore it or reformat the file
 system.

Note
The obdfilter-survey script is NOT scalable
 beyond tens of OSTs since it is only intended to measure the I/O performance of individual
 storage subsystems, not the scalability of the entire system.

Note
The obdfilter-survey script must be customized, depending on the
 components under test and where the script's working files should be kept.
 Customization variables are described at the beginning of the
 obdfilter-survey script. In particular, pay attention to the listed
 maximum values listed for each parameter in the script.

32.3.1. Testing Local Disk Performance

The obdfilter-survey script can be run automatically or manually
 against a local disk. This script profiles the overall throughput of storage hardware,
 including the file system and RAID layers managing the storage, by sending workloads to the
 OSTs that vary in thread count, object count, and I/O size.
When the obdfilter-survey script is run, it provides information
 about the performance abilities of the storage hardware and shows the saturation
 points.
The plot-obdfilter script generates from the output of the
 obdfilter-survey a CSV file and parameters for importing into a
 spreadsheet or gnuplot to visualize the data.
To run the obdfilter-survey script, create a standard Lustre file
 system configuration; no special setup is needed.
To perform an automatic run:
	Start the Lustre OSTs.
The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required to be mounted at this time.

	Verify that the obdecho module is loaded. Run:
modprobe obdecho

	Run the obdfilter-survey script with the parameter
 case=disk.
For example, to run a local test with up to two objects (nobjhi), up to two threads (thrhi), and 1024 MB transfer size (size):
$ nobjhi=2 thrhi=2 size=1024 case=disk sh obdfilter-survey

	Performance measurements for write, rewrite, read etc are provided below:
example output
Fri Sep 25 11:14:03 EDT 2015 Obdfilter-survey for case=disk from hds1fnb6123
ost 10 sz 167772160K rsz 1024K obj 10 thr 10 write 10982.73 [601.97,2912.91] rewrite 15696.54 [1160.92,3450.85] read 12358.60 [938.96,2634.87]
...
The file ./lustre-iokit/obdfilter-survey/README.obdfilter-survey
		provides an explaination for the output as follows:
ost 10 is the total number of OSTs under test.
sz 167772160K is the total amount of data read or written (in bytes).
rsz 1024K is the record size (size of each echo_client I/O, in bytes).
obj 10 is the total number of objects over all OSTs
thr 10 is the total number of threads over all OSTs and objects
write is the test name. If more tests have been specified they
 all appear on the same line.
10982.73 is the aggregate bandwidth over all OSTs measured by
 dividing the total number of MB by the elapsed time.
[601.97,2912.91] are the minimum and maximum instantaneous bandwidths seen on
 any individual OST.
Note that although the numbers of threads and objects are specifed per-OST
in the customization section of the script, results are reported aggregated
over all OSTs.

To perform a manual run:
	Start the Lustre OSTs.
The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required to be mounted at this time.

	Verify that the obdecho module is loaded. Run:
modprobe obdecho

	Determine the OST names.
On the OSS nodes to be tested, run the lctl dl command. The OST device names are listed in the fourth column of the output. For example:
$ lctl dl |grep obdfilter
0 UP obdfilter lustre-OST0001 lustre-OST0001_UUID 1159
2 UP obdfilter lustre-OST0002 lustre-OST0002_UUID 1159
...

	List all OSTs you want to test.
Use the targets=parameter to list the OSTs separated by spaces. List the individual OSTs by name using the format
 fsname-OSTnumber
 (for example, lustre-OST0001). You do not have to specify an MDS or LOV.

	Run the obdfilter-survey script with the
 targets=parameter.
For example, to run a local test with up to two objects (nobjhi), up to two threads (thrhi), and 1024 Mb (size) transfer size:
$ nobjhi=2 thrhi=2 size=1024 targets="lustre-OST0001 \
	 lustre-OST0002" sh obdfilter-survey

32.3.2. Testing Network Performance

The obdfilter-survey script can only be run automatically against a
 network; no manual test is provided.
To run the network test, a specific Lustre file system setup is needed. Make sure that
 these configuration requirements have been met.
To perform an automatic run:
	Start the Lustre OSTs.
The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required to be mounted at this time.

	Verify that the obdecho module is loaded. Run:
modprobe obdecho

	Start lctl and check the device list, which must be empty. Run:
lctl dl

	Run the obdfilter-survey script with the parameters
 case=network and
 targets=hostname|ip_of_server. For
 example:
$ nobjhi=2 thrhi=2 size=1024 targets="oss0 oss1" \
	 case=network sh obdfilter-survey

	On the server side, view the statistics at:
lctl get_param obdecho.echo_srv.stats
where echo_srv
 is the obdecho server created by the script.

32.3.3. Testing Remote Disk Performance

The obdfilter-survey script can be run automatically or manually
 against a network disk. To run the network disk test, start with a standard Lustre
 configuration. No special setup is needed.
To perform an automatic run:
	Start the Lustre OSTs.
The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required to be mounted at this time.

	Verify that the obdecho module is loaded. Run:
modprobe obdecho

	Run the obdfilter-survey script with the parameter
 case=netdisk. For example:
$ nobjhi=2 thrhi=2 size=1024 case=netdisk sh obdfilter-survey

To perform a manual run:
	Start the Lustre OSTs.
The Lustre OSTs should be mounted on the OSS node(s) to be tested. The Lustre client is not required to be mounted at this time.

	Verify that the obdecho module is loaded. Run:
modprobe obdecho

	Determine the OSC names.
On the OSS nodes to be tested, run the lctl dl command. The OSC device names are listed in the fourth column of the output. For example:
$ lctl dl |grep obdfilter
3 UP osc lustre-OST0000-osc-ffff88007754bc00 \
 54b91eab-0ea9-1516-b571-5e6df349592e 5
4 UP osc lustre-OST0001-osc-ffff88007754bc00 \
 54b91eab-0ea9-1516-b571-5e6df349592e 5
...

	List all OSCs you want to test.
Use the targets=parameter to list the OSCs separated by spaces. List the individual OSCs by name separated by spaces using the format fsname-OST_name-osc-instance (for example, lustre-OST0000-osc-ffff88007754bc00). You do not have to specify an MDS or LOV.

	Run the obdfilter-survey script with the
 targets=osc and
 case=netdisk.
An example of a local test run with up to two objects (nobjhi), up to two threads (thrhi), and 1024 Mb (size) transfer size is shown below:
$ nobjhi=2 thrhi=2 size=1024 \
 targets="lustre-OST0000-osc-ffff88007754bc00 \
 lustre-OST0001-osc-ffff88007754bc00" sh obdfilter-survey

32.3.4. Output Files

When the obdfilter-survey script runs, it creates a number of working
 files and a pair of result files. All files start with the prefix defined in the variable
 ${rslt}.
	
 File

 	
 Description

	
 ${rslt}.summary

 	
 Same as stdout

	
 ${rslt}.script_*

 	
 Per-host test script files

	
 ${rslt}.detail_tmp*

 	
 Per-OST result files

	
 ${rslt}.detail

 	
 Collected result files for post-mortem

The obdfilter-survey script iterates over the given number of threads
 and objects performing the specified tests and checks that all test processes have completed
 successfully.
Note
The obdfilter-survey script may not clean up properly if it is
 aborted or if it encounters an unrecoverable error. In this case, a manual cleanup may be
 required, possibly including killing any running instances of lctl
 (local or remote), removing echo_client instances created by the script
 and unloading obdecho.

32.3.4.1. Script Output

The .summary file and stdout of the
 obdfilter-survey script contain lines like:
ost 8 sz 67108864K rsz 1024 obj 8 thr 8 write 613.54 [64.00, 82.00]

Where:
	
 Parameter and value

 	
 Description

	
 ost 8

 	
 Total number of OSTs being tested.

	
 sz 67108864K

 	
 Total amount of data read or written (in KB).

	
 rsz 1024

 	
 Record size (size of each echo_client I/O, in KB).

	
 obj 8

 	
 Total number of objects over all OSTs.

	
 thr 8

 	
 Total number of threads over all OSTs and objects.

	
 write

 	
 Test name. If more tests have been specified, they all appear on the same line.

	
 613.54

 	
 Aggregate bandwidth over all OSTs (measured by dividing the total number of MB by the elapsed time).

	
 [64, 82.00]

 	
 Minimum and maximum instantaneous bandwidths on an individual OST.

Note
Although the numbers of threads and objects are specified per-OST in the customization section of the script, the reported results are aggregated over all OSTs.

32.3.4.2. Visualizing Results

It is useful to import the obdfilter-survey
 script summary data (it is fixed width) into Excel (or any graphing
 package) and graph the bandwidth versus the number of threads for
 varying numbers of concurrent regions. This shows how the OSS performs
 for a given number of concurrently-accessed objects (files) with varying
 numbers of I/Os in flight.
It is also useful to monitor and record average disk I/O sizes
 during each test using the 'disk io size' histogram in the
 file lctl get_param obdfilter.*.brw_stats
 (see Section 38.3.5, “Monitoring the OST Block I/O Stream” for details). These
 numbers help identify problems in the system when full-sized I/Os are
 not submitted to the underlying disk. This may be caused by problems in
 the device driver or Linux block layer.
The plot-obdfilter script included in the I/O
 toolkit is an example of processing output files to a .csv format and
 plotting a graph using gnuplot.

32.4. Testing OST I/O Performance (ost-survey)

The ost-survey tool is a shell script that uses lfs
 setstripe to perform I/O against a single OST. The script writes a file (currently
 using dd) to each OST in the Lustre file system, and compares read and
 write speeds. The ost-survey tool is used to detect anomalies between
 otherwise identical disk subsystems.
Note
We have frequently discovered wide performance variations across all LUNs in a cluster.
 This may be caused by faulty disks, RAID parity reconstruction during the test, or faulty
 network hardware.

To run the ost-survey script, supply a file size (in KB) and the Lustre
 file system mount point. For example, run:
$./ost-survey.sh -s 10 /mnt/lustre

Typical output is:

Number of Active OST devices : 4
Worst Read OST indx: 2 speed: 2835.272725
Best Read OST indx: 3 speed: 2872.889668
Read Average: 2852.508999 +/- 16.444792 MB/s
Worst Write OST indx: 3 speed: 17.705545
Best Write OST indx: 2 speed: 128.172576
Write Average: 95.437735 +/- 45.518117 MB/s
Ost# Read(MB/s) Write(MB/s) Read-time Write-time
--
0 2837.440 126.918 0.035 0.788
1 2864.433 108.954 0.035 0.918
2 2835.273 128.173 0.035 0.780
3 2872.890 17.706 0.035 5.648

32.5. Testing MDS Performance (mds-survey)

mds-survey is available in Lustre software release 2.2 and beyond. The
 mds-survey script tests the local metadata performance using the
 echo_client to drive different layers of the MDS stack: mdd, mdt, osd (the Lustre software
 only supports mdd stack). It can be used with the following classes of operations:
	Open-create/mkdir/create

	Lookup/getattr/setxattr

	Delete/destroy

	Unlink/rmdir

These operations will be run by a variable number of concurrent threads and will test with the number of directories specified by the user. The run can be executed such that all threads operate in a single directory (dir_count=1) or in private/unique directory (dir_count=x thrlo=x thrhi=x).
The mdd instance is driven directly. The script automatically loads the obdecho module if required and creates instance of echo_client.
This script can also create OST objects by providing stripe_count greater than zero.
To perform a run:
	Start the Lustre MDT.
The Lustre MDT should be mounted on the MDS node to be tested.

	Start the Lustre OSTs (optional, only required when test with OST objects)
The Lustre OSTs should be mounted on the OSS node(s).

	Run the mds-survey script as explain below
The script must be customized according to the components under test and where it should keep its working files. Customization variables are described as followed:
	thrlo - threads to start testing. skipped if less than
 dir_count

	thrhi - maximum number of threads to test

	targets - MDT instance

	file_count - number of files per thread to test

	dir_count - total number of directories to test. Must be less
 than or equal to thrhi

	stripe_count - number stripe on OST objects

	tests_str - test operations. Must have at least "create" and
 "destroy"

	start_number - base number for each thread to prevent name
 collisions

	layer - MDS stack's layer to be tested

Run without OST objects creation:
Setup the Lustre MDS without OST mounted. Then invoke the mds-survey script
$ thrhi=64 file_count=200000 sh mds-survey
Run with OST objects creation:
Setup the Lustre MDS with at least one OST mounted. Then invoke the
 mds-survey script with stripe_count
 parameter
$ thrhi=64 file_count=200000 stripe_count=2 sh mds-survey
Note: a specific MDT instance can be specified using targets variable.
$ targets=lustre-MDT0000 thrhi=64 file_count=200000 stripe_count=2 sh mds-survey

32.5.1. Output Files

When the mds-survey script runs, it creates a number of working files and a pair of result files. All files start with the prefix defined in the variable ${rslt}.
	
 File

 	
 Description

	
 ${rslt}.summary

 	
 Same as stdout

	
 ${rslt}.script_*

 	
 Per-host test script files

	
 ${rslt}.detail_tmp*

 	
 Per-mdt result files

	
 ${rslt}.detail

 	
 Collected result files for post-mortem

The mds-survey script iterates over the given number of threads performing the specified tests and checks that all test processes have completed successfully.
Note
The mds-survey script may not clean up properly if it is aborted or if it encounters an unrecoverable error. In this case, a manual cleanup may be required, possibly including killing any running instances of lctl, removing echo_client instances created by the script and unloading obdecho.

32.5.2. Script Output

The .summary file and stdout of the mds-survey script contain lines like:
mdt 1 file 100000 dir 4 thr 4 create 5652.05 [999.01,46940.48] destroy 5797.79 [0.00,52951.55]
Where:
	
 Parameter and value

 	
 Description

	
 mdt 1

 	
 Total number of MDT under test

	
 file 100000

 	
 Total number of files per thread to operate

	
 dir 4

 	
 Total number of directories to operate

	
 thr 4

 	
 Total number of threads operate over all directories

	
 create, destroy

 	
 Tests name. More tests will be displayed on the same line.

	
 565.05

 	
 Aggregate operations over MDT measured by dividing the total number of operations by the elapsed time.

	
 [999.01,46940.48]

 	
 Minimum and maximum instantaneous operation seen on any individual MDT

Note
If script output has "ERROR", this usually means there is issue during the run such as running out of space on the MDT and/or OST. More detailed debug information is available in the ${rslt}.detail file

32.6. Collecting Application Profiling Information (stats-collect)

The stats-collect utility contains the following scripts used to collect application profiling information from Lustre clients and servers:
	lstat.sh - Script for a single node that is run on each profile node.

	gather_stats_everywhere.sh - Script that collect statistics.

	config.sh - Script that contains customized configuration descriptions.

The stats-collect utility requires:
	Lustre software to be installed and set up on your cluster

	SSH and SCP access to these nodes without requiring a password

32.6.1. Using stats-collect

The stats-collect utility is configured by including profiling configuration variables in the config.sh script. Each configuration variable takes the following form, where 0 indicates statistics are to be collected only when the script starts and stops and n indicates the interval in seconds at which statistics are to be collected:
statistic_INTERVAL=0|n
Statistics that can be collected include:
	VMSTAT - Memory and CPU usage and aggregate read/write operations

	SERVICE - Lustre OST and MDT RPC service statistics

	BRW - OST bulk read/write statistics (brw_stats)

	SDIO - SCSI disk IO statistics (sd_iostats)

	MBALLOC - ldiskfs block allocation statistics

	IO - Lustre target operations statistics

	JBD - ldiskfs journal statistics

	CLIENT - Lustre OSC request statistics

To collect profile information:
Begin collecting statistics on each node specified in the config.sh script.
	Starting the collect profile daemon on each node by entering:
sh gather_stats_everywhere.sh config.sh start

	Run the test.

	Stop collecting statistics on each node, clean up the temporary file, and create a profiling tarball.
Enter:
sh gather_stats_everywhere.sh config.sh stop log_name.tgz
When log_name.tgz
 is specified, a profile tarball /tmp/log_name.tgz is created.

	Analyze the collected statistics and create a csv tarball for the specified profiling data.
sh gather_stats_everywhere.sh config.sh analyse log_tarball.tgz csv

Chapter 33. Tuning a Lustre File System

This chapter contains information about tuning a Lustre file system for
 better performance.
Note
Many options in the Lustre software are set by means of kernel module
 parameters. These parameters are contained in the
 /etc/modprobe.d/lustre.conf file.

33.1.

 Optimizing the Number of Service Threads

An OSS can have a minimum of two service threads and a maximum of 512
 service threads. The number of service threads is a function of how much
 RAM and how many CPUs are on each OSS node (1 thread / 128MB * num_cpus).
 If the load on the OSS node is high, new service threads will be started in
 order to process more requests concurrently, up to 4x the initial number of
 threads (subject to the maximum of 512). For a 2GB 2-CPU system, the
 default thread count is 32 and the maximum thread count is 128.
Increasing the size of the thread pool may help when:
	Several OSTs are exported from a single OSS

	Back-end storage is running synchronously

	I/O completions take excessive time due to slow storage

Decreasing the size of the thread pool may help if:
	Clients are overwhelming the storage capacity

	There are lots of "slow I/O" or similar messages

Increasing the number of I/O threads allows the kernel and storage to
 aggregate many writes together for more efficient disk I/O. The OSS thread
 pool is shared--each thread allocates approximately 1.5 MB (maximum RPC
 size + 0.5 MB) for internal I/O buffers.
It is very important to consider memory consumption when increasing
 the thread pool size. Drives are only able to sustain a certain amount of
 parallel I/O activity before performance is degraded, due to the high
 number of seeks and the OST threads just waiting for I/O. In this
 situation, it may be advisable to decrease the load by decreasing the
 number of OST threads.
Determining the optimum number of OSS threads is a process of trial
 and error, and varies for each particular configuration. Variables include
 the number of OSTs on each OSS, number and speed of disks, RAID
 configuration, and available RAM. You may want to start with a number of
 OST threads equal to the number of actual disk spindles on the node. If you
 use RAID, subtract any dead spindles not used for actual data (e.g., 1 of N
 of spindles for RAID5, 2 of N spindles for RAID6), and monitor the
 performance of clients during usual workloads. If performance is degraded,
 increase the thread count and see how that works until performance is
 degraded again or you reach satisfactory performance.
Note
If there are too many threads, the latency for individual I/O
 requests can become very high and should be avoided. Set the desired
 maximum thread count permanently using the method described above.

33.1.1.
 Specifying the OSS Service Thread Count

The
 oss_num_threads parameter enables the number of OST
 service threads to be specified at module load time on the OSS
 nodes:

options ost oss_num_threads={N}

After startup, the minimum and maximum number of OSS thread counts
 can be set via the
 {service}.thread_{min,max,started} tunable. To change
 the tunable at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

 This works in a similar fashion to
 binding of threads on MDS. MDS thread tuning is covered in
 Section 33.2, “
 Binding MDS Service Thread to CPU Partitions”.
	
 oss_cpts=[EXPRESSION] binds the default OSS service
 on CPTs defined by
 [EXPRESSION].

	
 oss_io_cpts=[EXPRESSION] binds the IO OSS service
 on CPTs defined by
 [EXPRESSION].

For further details, see
 Section 38.9, “Setting MDS and OSS Thread Counts”.

33.1.2.
 Specifying the MDS Service Thread Count

The
 mds_num_threads parameter enables the number of MDS
 service threads to be specified at module load time on the MDS
 node:
options mds mds_num_threads={N}
After startup, the minimum and maximum number of MDS thread counts
 can be set via the
 {service}.thread_{min,max,started} tunable. To change
 the tunable at runtime, run:

lctl {get,set}_param {service}.thread_{min,max,started}

For details, see
 Section 38.9, “Setting MDS and OSS Thread Counts”.
The number of MDS service threads started depends on system size
 and the load on the server, and has a default maximum of 64. The
 maximum potential number of threads (MDS_MAX_THREADS)
 is 1024.
Note
The OSS and MDS start two threads per service per CPT at mount
	time, and dynamically increase the number of running service threads in
	response to server load. Setting the *_num_threads
	module parameter starts the specified number of threads for that
	service immediately and disables automatic thread creation behavior.
	

Parameters are available to provide administrators control
 over the number of service threads.
	
 mds_rdpg_num_threads controls the number of threads
 in providing the read page service. The read page service handles
 file close and readdir operations.

	
 mds_attr_num_threads controls the number of threads
 in providing the setattr service to clients running Lustre software
 release 1.8.

Introduced in Lustre 2.4
Introduced in Lustre 2.9
Introduced in Lustre 2.9

33.2.
 Binding MDS Service Thread to CPU Partitions

With the Node Affinity (Node affinity) feature,
 MDS threads can be bound to particular CPU partitions (CPTs) to improve CPU
 cache usage and memory locality. Default values for CPT counts and CPU core
 bindings are selected automatically to provide good overall performance for
 a given CPU count. However, an administrator can deviate from these setting
 if they choose. For details on specifying the mapping of CPU cores to
 CPTs see Section 33.4, “
 libcfs Tuning”.

	
 mds_num_cpts=[EXPRESSION] binds the default MDS
 service threads to CPTs defined by
 EXPRESSION. For example
 mds_num_cpts=[0-3] will bind the MDS service threads
 to
 CPT[0,1,2,3].

	
 mds_rdpg_num_cpts=[EXPRESSION] binds the read page
 service threads to CPTs defined by
 EXPRESSION. The read page service handles file close
 and readdir requests. For example
 mds_rdpg_num_cpts=[4] will bind the read page threads
 to
 CPT4.

	
 mds_attr_num_cpts=[EXPRESSION] binds the setattr
 service threads to CPTs defined by
 EXPRESSION.

Parameters must be set before module load in the file
 /etc/modprobe.d/lustre.conf. For example:

Example 33.1. lustre.conf
options lnet networks=tcp0(eth0)
options mdt mds_num_cpts=[0]

33.3.

 Tuning LNet Parameters

This section describes LNet tunables, the use of which may be
 necessary on some systems to improve performance. To test the performance
 of your Lustre network, see
 Chapter 31, Testing Lustre Network Performance (LNet Self-Test).
33.3.1. Transmit and Receive Buffer Size

The kernel allocates buffers for sending and receiving messages on
 a network.

 ksocklnd has separate parameters for the transmit and
 receive buffers.

options ksocklnd tx_buffer_size=0 rx_buffer_size=0

If these parameters are left at the default value (0), the system
 automatically tunes the transmit and receive buffer size. In almost every
 case, this default produces the best performance. Do not attempt to tune
 these parameters unless you are a network expert.

33.3.2. Hardware Interrupts (
 enable_irq_affinity)

The hardware interrupts that are generated by network adapters may
 be handled by any CPU in the system. In some cases, we would like network
 traffic to remain local to a single CPU to help keep the processor cache
 warm and minimize the impact of context switches. This is helpful when an
 SMP system has more than one network interface and ideal when the number
 of interfaces equals the number of CPUs. To enable the
 enable_irq_affinity parameter, enter:

options ksocklnd enable_irq_affinity=1

In other cases, if you have an SMP platform with a single fast
 interface such as 10 Gb Ethernet and more than two CPUs, you may see
 performance improve by turning this parameter off.

options ksocklnd enable_irq_affinity=0

By default, this parameter is off. As always, you should test the
 performance to compare the impact of changing this parameter.

33.3.3.
 Binding Network Interface Against CPU Partitions

Lustre allows enhanced network interface control. This means that
 an administrator can bind an interface to one or more CPU partitions.
 Bindings are specified as options to the LNet modules. For more
 information on specifying module options, see
 Section 42.1, “

 Introduction”
For example,
 o2ib0(ib0)[0,1] will ensure that all messages for
 o2ib0 will be handled by LND threads executing on
 CPT0 and
 CPT1. An additional example might be:
 tcp1(eth0)[0]. Messages for
 tcp1 are handled by threads on
 CPT0.

33.3.4.
 Network Interface Credits

Network interface (NI) credits are shared across all CPU partitions
 (CPT). For example, if a machine has four CPTs and the number of NI
 credits is 512, then each partition has 128 credits. If a large number of
 CPTs exist on the system, LNet checks and validates the NI credits for
 each CPT to ensure each CPT has a workable number of credits. For
 example, if a machine has 16 CPTs and the number of NI credits is 256,
 then each partition only has 16 credits. 16 NI credits is low and could
 negatively impact performance. As a result, LNet automatically adjusts
 the credits to 8*
 peer_credits(
 peer_credits is 8 by default), so each partition has 64
 credits.
Increasing the number of
 credits/
 peer_credits can improve the performance of high
 latency networks (at the cost of consuming more memory) by enabling LNet
 to send more inflight messages to a specific network/peer and keep the
 pipeline saturated.
An administrator can modify the NI credit count using
 ksoclnd or
 ko2iblnd. In the example below, 256 credits are
 applied to TCP connections.

ksocklnd credits=256

Applying 256 credits to IB connections can be achieved with:

ko2iblnd credits=256

Note
LNet may revalidate the NI credits, so the administrator's
	request may not persist.

33.3.5.
 Router Buffers

When a node is set up as an LNet router, three pools of buffers are
 allocated: tiny, small and large. These pools are allocated per CPU
 partition and are used to buffer messages that arrive at the router to be
 forwarded to the next hop. The three different buffer sizes accommodate
 different size messages.
If a message arrives that can fit in a tiny buffer then a tiny
 buffer is used, if a message doesn’t fit in a tiny buffer, but fits in a
 small buffer, then a small buffer is used. Finally if a message does not
 fit in either a tiny buffer or a small buffer, a large buffer is
 used.
Router buffers are shared by all CPU partitions. For a machine with
 a large number of CPTs, the router buffer number may need to be specified
 manually for best performance. A low number of router buffers risks
 starving the CPU partitions of resources.
	
 tiny_router_buffers: Zero payload buffers used for
 signals and acknowledgements.

	
 small_router_buffers: 4 KB payload buffers for
 small messages

	
 large_router_buffers: 1 MB maximum payload
 buffers, corresponding to the recommended RPC size of 1 MB.

The default setting for router buffers typically results in
 acceptable performance. LNet automatically sets a default value to reduce
 the likelihood of resource starvation. The size of a router buffer can be
 modified as shown in the example below. In this example, the size of the
 large buffer is modified using the
 large_router_buffers parameter.

lnet large_router_buffers=8192

Note
LNet may revalidate the router buffer setting, so the
	administrator's request may not persist.

33.3.6.
 Portal Round-Robin

Portal round-robin defines the policy LNet applies to deliver
 events and messages to the upper layers. The upper layers are PLRPC
 service or LNet selftest.
If portal round-robin is disabled, LNet will deliver messages to
 CPTs based on a hash of the source NID. Hence, all messages from a
 specific peer will be handled by the same CPT. This can reduce data
 traffic between CPUs. However, for some workloads, this behavior may
 result in poorly balancing loads across the CPU.
If portal round-robin is enabled, LNet will round-robin incoming
 events across all CPTs. This may balance load better across the CPU but
 can incur a cross CPU overhead.
The current policy can be changed by an administrator with
 echo
 value>
 /proc/sys/lnet/portal_rotor. There are four options for

 value
 :
	
 OFF

Disable portal round-robin on all incoming requests.

	
 ON

Enable portal round-robin on all incoming requests.

	
 RR_RT

Enable portal round-robin only for routed messages.

	
 HASH_RT

Routed messages will be delivered to the upper layer by hash of
 source NID (instead of NID of router.) This is the default
 value.

33.3.7. LNet Peer Health

Two options are available to help determine peer health:

	
 peer_timeout- The timeout (in seconds) before an
 aliveness query is sent to a peer. For example, if
 peer_timeout is set to
 180sec, an aliveness query is sent to the peer
 every 180 seconds. This feature only takes effect if the node is
 configured as an LNet router.
In a routed environment, the
 peer_timeout feature should always be on (set to a
 value in seconds) on routers. If the router checker has been enabled,
 the feature should be turned off by setting it to 0 on clients and
 servers.
For a non-routed scenario, enabling the
 peer_timeout option provides health information
 such as whether a peer is alive or not. For example, a client is able
 to determine if an MGS or OST is up when it sends it a message. If a
 response is received, the peer is alive; otherwise a timeout occurs
 when the request is made.
In general,
 peer_timeout should be set to no less than the LND
 timeout setting. For more information about LND timeouts, see
 Section 38.5.2, “Setting Static Timeouts”.
When the
 o2iblnd(IB) driver is used,
 peer_timeout should be at least twice the value of
 the
 ko2iblnd keepalive option. for more information
 about keepalive options, see
 Section 42.2.2, “
 SOCKLND Kernel TCP/IP LND”.

	
 avoid_asym_router_failure– When set to 1, the
 router checker running on the client or a server periodically pings
 all the routers corresponding to the NIDs identified in the routes
 parameter setting on the node to determine the status of each router
 interface. The default setting is 1. (For more information about the
 LNet routes parameter, see
 Section 9.5, “Setting the LNet Module routes
 Parameter”
A router is considered down if any of its NIDs are down. For
 example, router X has three NIDs:
 Xnid1,
 Xnid2, and
 Xnid3. A client is connected to the router via
 Xnid1. The client has router checker enabled. The
 router checker periodically sends a ping to the router via
 Xnid1. The router responds to the ping with the
 status of each of its NIDs. In this case, it responds with
 Xnid1=up,
 Xnid2=up,
 Xnid3=down. If
 avoid_asym_router_failure==1, the router is
 considered down if any of its NIDs are down, so router X is
 considered down and will not be used for routing messages. If
 avoid_asym_router_failure==0, router X will
 continue to be used for routing messages.

The following router checker parameters must be set to the maximum
 value of the corresponding setting for this option on any client or
 server:

	
 dead_router_check_interval

	
 live_router_check_interval

	
 router_ping_timeout

For example, the
 dead_router_check_interval parameter on any router must
 be MAX.

33.4.
 libcfs Tuning

Lustre allows binding service threads via CPU Partition Tables
 (CPTs). This allows the system administrator to fine-tune on which CPU
 cores the Lustre service threads are run, for both OSS and MDS services,
 as well as on the client.

CPTs are useful to reserve some cores on the OSS or MDS nodes for
 system functions such as system monitoring, HA heartbeat, or similar
 tasks. On the client it may be useful to restrict Lustre RPC service
 threads to a small subset of cores so that they do not interfere with
 computation, or because these cores are directly attached to the network
 interfaces.

By default, the Lustre software will automatically generate CPU
 partitions (CPT) based on the number of CPUs in the system.
 The CPT count can be explicitly set on the libcfs module using
 cpu_npartitions=NUMBER.
 The value of cpu_npartitions must be an integer between
 1 and the number of online CPUs.

Introduced in Lustre 2.9In Lustre 2.9 and later the default is to use
 one CPT per NUMA node. In earlier versions of Lustre, by default there
 was a single CPT if the online CPU core count was four or fewer, and
 additional CPTs would be created depending on the number of CPU cores,
 typically with 4-8 cores per CPT.

Tip
Setting cpu_npartitions=1 will disable most
 of the SMP Node Affinity functionality.

33.4.1. CPU Partition String Patterns

CPU partitions can be described using string pattern notation.
 If cpu_pattern=N is used, then there will be one
 CPT for each NUMA node in the system, with each CPT mapping all of
 the CPU cores for that NUMA node.

It is also possible to explicitly specify the mapping between
 CPU cores and CPTs, for example:
	
 cpu_pattern="0[2,4,6] 1[3,5,7]

Create two CPTs, CPT0 contains cores 2, 4, and 6, while CPT1
	 contains cores 3, 5, 7. CPU cores 0 and 1 will not be used by Lustre
	 service threads, and could be used for node services such as
	 system monitoring, HA heartbeat threads, etc. The binding of
	 non-Lustre services to those CPU cores may be done in userspace
	 using numactl(8) or other application-specific
	 methods, but is beyond the scope of this document.

	
 cpu_pattern="N 0[0-3] 1[4-7]

Create two CPTs, with CPT0 containing all CPUs in NUMA
	 node[0-3], while CPT1 contains all CPUs in NUMA node [4-7].

The current configuration of the CPU partition can be read via
 lctl get_parm cpu_partition_table. For example,
 a simple 4-core system has a single CPT with all four CPU cores:

$ lctl get_param cpu_partition_table
cpu_partition_table=0	: 0 1 2 3

 while a larger NUMA system with four 12-core CPUs may have four CPTs:

$ lctl get_param cpu_partition_table
cpu_partition_table=
0	: 0 1 2 3 4 5 6 7 8 9 10 11
1	: 12 13 14 15 16 17 18 19 20 21 22 23
2	: 24 25 26 27 28 29 30 31 32 33 34 35
3	: 36 37 38 39 40 41 42 43 44 45 46 47

33.5.
 LND Tuning

LND tuning allows the number of threads per CPU partition to be
 specified. An administrator can set the threads for both
 ko2iblnd and
 ksocklnd using the
 nscheds parameter. This adjusts the number of threads for
 each partition, not the overall number of threads on the LND.
Note
Lustre software release 2.3 has greatly decreased the default
 number of threads for
 ko2iblnd and
 ksocklnd on high-core count machines. The current
 default values are automatically set and are chosen to work well across a
 number of typical scenarios.

33.5.1. ko2iblnd Tuning

The following table outlines the ko2iblnd module parameters to be used
 for tuning:
	
		
		 Module Parameter
		

			
		
		 Default Value
		

			
		
		 Description
		

		
	
		
		 service
		

			
		
		 987
		

			
		 Service number (within RDMA_PS_TCP).

		
	
		
		 cksum
		

			
		
		 0
		

			
		 Set non-zero to enable message (not RDMA) checksums.

		
	
		
		 timeout
		

			
		
		 50
		

	 	
		 Timeout in seconds.

		
	
		
		 nscheds
		

			
		
		 0
		

			
		 Number of threads in each scheduler pool (per CPT). Value of
 zero means we derive the number from the number of cores.

		
	
		
		 conns_per_peer
		

			
		
		 4 (OmniPath), 1 (Everything else)
		

			
		 Introduced in 2.10. Number of connections to each peer. Messages
 are sent round-robin over the connection pool. Provides signifiant
 improvement with OmniPath.

		
	
		
		 ntx
		

			
		
		 512
		

			
		 Number of message descriptors allocated for each pool at
 startup. Grows at runtime. Shared by all CPTs.

		
	
		
		 credits
		

			
		
		 256
		

			
		 Number of concurrent sends on network.

		
	
		
		 peer_credits
		

			
		
		 8
		

			
		 Number of concurrent sends to 1 peer. Related/limited by IB
 queue size.

		
	
		
		 peer_credits_hiw
		

			
		
		 0
		

			
		 When eagerly to return credits.

		
	
		
		 peer_buffer_credits
		

			
		
		 0
		

			
		 Number per-peer router buffer credits.

		
	
		
		 peer_timeout
		

			
		
		 180
		

			
		 Seconds without aliveness news to declare peer dead (less than
 or equal to 0 to disable).

		
	
		
		 ipif_name
		

			
		
		 ib0
		

			
		 IPoIB interface name.

		
	
		
		 retry_count
		

			
		
		 5
		

			
		 Retransmissions when no ACK received.

		
	
		
		 rnr_retry_count
		

			
		
		 6
		

			
		 RNR retransmissions.

		
	
		
		 keepalive
		

			
		
		 100
		

			
		 Idle time in seconds before sending a keepalive.

		
	
		
		 ib_mtu
		

			
		
		 0
		

			
		 IB MTU 256/512/1024/2048/4096.

		
	
		
		 concurrent_sends
		

			
		
		 0
		

			
		 Send work-queue sizing. If zero, derived from
 map_on_demand and peer_credits.

		
	
		
		 map_on_demand
		

			
		
 0 (pre-4.8 Linux) 1 (4.8 Linux onward) 32 (OmniPath)
		

			
		 Number of fragments reserved for connection. If zero, use
 global memory region (found to be security issue). If non-zero, use
 FMR or FastReg for memory registration. Value needs to agree between
 both peers of connection.

		
	
		
		 fmr_pool_size
		

			
		
		 512
		

			
		 Size of fmr pool on each CPT (>= ntx / 4). Grows at runtime.

		
	
		
		 fmr_flush_trigger
		

			
		
		 384
		

			
		 Number dirty FMRs that triggers pool flush.

		
	
		
		 fmr_cache
		

			
		
		 1
		

			
		 Non-zero to enable FMR caching.

		
	
		
		 dev_failover
		

			
		
		 0
		

			
		 HCA failover for bonding (0 OFF, 1 ON, other values reserved).

		
	
		
		 require_privileged_port
		

			
		
		 0
		

			
		 Require privileged port when accepting connection.

		
	
		
		 use_privileged_port
		

			
		
		 1
		

			
		 Use privileged port when initiating connection.

		
	
		
		 wrq_sge
		

			
		
		 2
		

			
		 Introduced in 2.10. Number scatter/gather element groups per
 work request. Used to deal with fragmentations which can consume
 double the number of work requests.

		

33.6.
 Network Request Scheduler (NRS) Tuning

The Network Request Scheduler (NRS) allows the administrator to
 influence the order in which RPCs are handled at servers, on a per-PTLRPC
 service basis, by providing different policies that can be activated and
 tuned in order to influence the RPC ordering. The aim of this is to provide
 for better performance, and possibly discrete performance characteristics
 using future policies.
The NRS policy state of a PTLRPC service can be read and set via the
 {service}.nrs_policies tunable. To read a PTLRPC
 service's NRS policy state, run:

lctl get_param {service}.nrs_policies

For example, to read the NRS policy state of the
 ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_policies
ost.OSS.ost_io.nrs_policies=

regular_requests:
 - name: fifo
 state: started
 fallback: yes
 queued: 0
 active: 0

 - name: crrn
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: orr
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: trr
 state: started
 fallback: no
 queued: 2420
 active: 268

 - name: tbf
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: delay
 state: stopped
 fallback: no
 queued: 0
 active: 0

high_priority_requests:
 - name: fifo
 state: started
 fallback: yes
 queued: 0
 active: 0

 - name: crrn
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: orr
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: trr
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: tbf
 state: stopped
 fallback: no
 queued: 0
 active: 0

 - name: delay
 state: stopped
 fallback: no
 queued: 0
 active: 0

NRS policy state is shown in either one or two sections, depending on
 the PTLRPC service being queried. The first section is named
 regular_requests and is available for all PTLRPC
 services, optionally followed by a second section which is named
 high_priority_requests. This is because some PTLRPC
 services are able to treat some types of RPCs as higher priority ones, such
 that they are handled by the server with higher priority compared to other,
 regular RPC traffic. For PTLRPC services that do not support high-priority
 RPCs, you will only see the
 regular_requests section.
There is a separate instance of each NRS policy on each PTLRPC
 service for handling regular and high-priority RPCs (if the service
 supports high-priority RPCs). For each policy instance, the following
 fields are shown:
	

 Field

 	

 Description

	

 name

 	
 The name of the policy.

	

 state

 	
 The state of the policy; this can be any of
 invalid, stopping, stopped, starting, started.
 A fully enabled policy is in the
 started state.

	

 fallback

 	
 Whether the policy is acting as a fallback policy or not. A
 fallback policy is used to handle RPCs that other enabled
 policies fail to handle, or do not support the handling of. The
 possible values are
 no, yes. Currently, only the FIFO policy can
 act as a fallback policy.

	

 queued

 	
 The number of RPCs that the policy has waiting to be
 serviced.

	

 active

 	
 The number of RPCs that the policy is currently
 handling.

To enable an NRS policy on a PTLRPC service run:

lctl set_param {service}.nrs_policies=
policy_name

This will enable the policy
 policy_namefor both regular and high-priority
 RPCs (if the PLRPC service supports high-priority RPCs) on the given
 service. For example, to enable the CRR-N NRS policy for the ldlm_cbd
 service, run:

$ lctl set_param ldlm.services.ldlm_cbd.nrs_policies=crrn
ldlm.services.ldlm_cbd.nrs_policies=crrn

For PTLRPC services that support high-priority RPCs, you can also
 supply an optional
 reg|hptoken, in order to enable an NRS policy
 for handling only regular or high-priority RPCs on a given PTLRPC service,
 by running:

lctl set_param {service}.nrs_policies="
policy_name
reg|hp"

For example, to enable the TRR policy for handling only regular, but
 not high-priority RPCs on the
 ost_io service, run:

$ lctl set_param ost.OSS.ost_io.nrs_policies="trr reg"
ost.OSS.ost_io.nrs_policies="trr reg"

Note
When enabling an NRS policy, the policy name must be given in
 lower-case characters, otherwise the operation will fail with an error
 message.

33.6.1.
 First In, First Out (FIFO) policy

The first in, first out (FIFO) policy handles RPCs in a service in
 the same order as they arrive from the LNet layer, so no special
 processing takes place to modify the RPC handling stream. FIFO is the
 default policy for all types of RPCs on all PTLRPC services, and is
 always enabled irrespective of the state of other policies, so that it
 can be used as a backup policy, in case a more elaborate policy that has
 been enabled fails to handle an RPC, or does not support handling a given
 type of RPC.
The FIFO policy has no tunables that adjust its behaviour.

33.6.2.
 Client Round-Robin over NIDs (CRR-N) policy

The client round-robin over NIDs (CRR-N) policy performs batched
 round-robin scheduling of all types of RPCs, with each batch consisting
 of RPCs originating from the same client node, as identified by its NID.
 CRR-N aims to provide for better resource utilization across the cluster,
 and to help shorten completion times of jobs in some cases, by
 distributing available bandwidth more evenly across all clients.
The CRR-N policy can be enabled on all types of PTLRPC services,
 and has the following tunable that can be used to adjust its
 behavior:
	
 {service}.nrs_crrn_quantum

The
 {service}.nrs_crrn_quantum tunable determines the
 maximum allowed size of each batch of RPCs; the unit of measure is in
 number of RPCs. To read the maximum allowed batch size of a CRR-N
 policy, run:

lctl get_param {service}.nrs_crrn_quantum

For example, to read the maximum allowed batch size of a CRR-N
 policy on the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_crrn_quantum
ost.OSS.ost_io.nrs_crrn_quantum=reg_quantum:16
hp_quantum:8

You can see that there is a separate maximum allowed batch size
 value for regular (
 reg_quantum) and high-priority (
 hp_quantum) RPCs (if the PTLRPC service supports
 high-priority RPCs).
To set the maximum allowed batch size of a CRR-N policy on a
 given service, run:

lctl set_param {service}.nrs_crrn_quantum=
1-65535

This will set the maximum allowed batch size on a given
 service, for both regular and high-priority RPCs (if the PLRPC
 service supports high-priority RPCs), to the indicated value.
For example, to set the maximum allowed batch size on the
 ldlm_canceld service to 16 RPCs, run:

$ lctl set_param ldlm.services.ldlm_canceld.nrs_crrn_quantum=16
ldlm.services.ldlm_canceld.nrs_crrn_quantum=16

For PTLRPC services that support high-priority RPCs, you can
 also specify a different maximum allowed batch size for regular and
 high-priority RPCs, by running:

$ lctl set_param {service}.nrs_crrn_quantum=
reg_quantum|hp_quantum:
1-65535"

For example, to set the maximum allowed batch size on the
 ldlm_canceld service, for high-priority RPCs to 32, run:

$ lctl set_param ldlm.services.ldlm_canceld.nrs_crrn_quantum="hp_quantum:32"
ldlm.services.ldlm_canceld.nrs_crrn_quantum=hp_quantum:32

By using the last method, you can also set the maximum regular
 and high-priority RPC batch sizes to different values, in a single
 command invocation.

33.6.3.
 Object-based Round-Robin (ORR) policy

The object-based round-robin (ORR) policy performs batched
 round-robin scheduling of bulk read write (brw) RPCs, with each batch
 consisting of RPCs that pertain to the same backend-file system object,
 as identified by its OST FID.
The ORR policy is only available for use on the ost_io service. The
 RPC batches it forms can potentially consist of mixed bulk read and bulk
 write RPCs. The RPCs in each batch are ordered in an ascending manner,
 based on either the file offsets, or the physical disk offsets of each
 RPC (only applicable to bulk read RPCs).
The aim of the ORR policy is to provide for increased bulk read
 throughput in some cases, by ordering bulk read RPCs (and potentially
 bulk write RPCs), and thus minimizing costly disk seek operations.
 Performance may also benefit from any resulting improvement in resource
 utilization, or by taking advantage of better locality of reference
 between RPCs.
The ORR policy has the following tunables that can be used to
 adjust its behaviour:
	
 ost.OSS.ost_io.nrs_orr_quantum

The
 ost.OSS.ost_io.nrs_orr_quantum tunable determines
 the maximum allowed size of each batch of RPCs; the unit of measure
 is in number of RPCs. To read the maximum allowed batch size of the
 ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_quantum
ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:256
hp_quantum:16

You can see that there is a separate maximum allowed batch size
 value for regular (
 reg_quantum) and high-priority (
 hp_quantum) RPCs (if the PTLRPC service supports
 high-priority RPCs).
To set the maximum allowed batch size for the ORR policy,
 run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=
1-65535

This will set the maximum allowed batch size for both regular
 and high-priority RPCs, to the indicated value.
You can also specify a different maximum allowed batch size for
 regular and high-priority RPCs, by running:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=
reg_quantum|hp_quantum:
1-65535

For example, to set the maximum allowed batch size for regular
 RPCs to 128, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:128
ost.OSS.ost_io.nrs_orr_quantum=reg_quantum:128

By using the last method, you can also set the maximum regular
 and high-priority RPC batch sizes to different values, in a single
 command invocation.

	
 ost.OSS.ost_io.nrs_orr_offset_type

The
 ost.OSS.ost_io.nrs_orr_offset_type tunable
 determines whether the ORR policy orders RPCs within each batch based
 on logical file offsets or physical disk offsets. To read the offset
 type value for the ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_offset_type
ost.OSS.ost_io.nrs_orr_offset_type=reg_offset_type:physical
hp_offset_type:logical

You can see that there is a separate offset type value for
 regular (
 reg_offset_type) and high-priority (
 hp_offset_type) RPCs.
To set the ordering type for the ORR policy, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=
physical|logical

This will set the offset type for both regular and
 high-priority RPCs, to the indicated value.
You can also specify a different offset type for regular and
 high-priority RPCs, by running:

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=
reg_offset_type|hp_offset_type:
physical|logical

For example, to set the offset type for high-priority RPCs to
 physical disk offsets, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_offset_type=hp_offset_type:physical
ost.OSS.ost_io.nrs_orr_offset_type=hp_offset_type:physical

By using the last method, you can also set offset type for
 regular and high-priority RPCs to different values, in a single
 command invocation.
Note
Irrespective of the value of this tunable, only logical
 offsets can, and are used for ordering bulk write RPCs.

	
 ost.OSS.ost_io.nrs_orr_supported

The
 ost.OSS.ost_io.nrs_orr_supported tunable determines
 the type of RPCs that the ORR policy will handle. To read the types
 of supported RPCs by the ORR policy, run:

$ lctl get_param ost.OSS.ost_io.nrs_orr_supported
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads
hp_supported=reads_and_writes

You can see that there is a separate supported 'RPC types'
 value for regular (
 reg_supported) and high-priority (
 hp_supported) RPCs.
To set the supported RPC types for the ORR policy, run:

$ lctl set_param ost.OSS.ost_io.nrs_orr_supported=
reads|writes|reads_and_writes

This will set the supported RPC types for both regular and
 high-priority RPCs, to the indicated value.
You can also specify a different supported 'RPC types' value
 for regular and high-priority RPCs, by running:

$ lctl set_param ost.OSS.ost_io.nrs_orr_supported=
reg_supported|hp_supported:
reads|writes|reads_and_writes

For example, to set the supported RPC types to bulk read and
 bulk write RPCs for regular requests, run:

$ lctl set_param
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads_and_writes
ost.OSS.ost_io.nrs_orr_supported=reg_supported:reads_and_writes

By using the last method, you can also set the supported RPC
 types for regular and high-priority RPC to different values, in a
 single command invocation.

33.6.4.
 Target-based Round-Robin (TRR) policy

The target-based round-robin (TRR) policy performs batched
 round-robin scheduling of brw RPCs, with each batch consisting of RPCs
 that pertain to the same OST, as identified by its OST index.
The TRR policy is identical to the object-based round-robin (ORR)
 policy, apart from using the brw RPC's target OST index instead of the
 backend-fs object's OST FID, for determining the RPC scheduling order.
 The goals of TRR are effectively the same as for ORR, and it uses the
 following tunables to adjust its behaviour:
	
 ost.OSS.ost_io.nrs_trr_quantum

The purpose of this tunable is exactly the same as for the
 ost.OSS.ost_io.nrs_orr_quantum tunable for the ORR
 policy, and you can use it in exactly the same way.

	
 ost.OSS.ost_io.nrs_trr_offset_type

The purpose of this tunable is exactly the same as for the
 ost.OSS.ost_io.nrs_orr_offset_type tunable for the
 ORR policy, and you can use it in exactly the same way.

	
 ost.OSS.ost_io.nrs_trr_supported

The purpose of this tunable is exactly the same as for the
 ost.OSS.ost_io.nrs_orr_supported tunable for the
 ORR policy, and you can use it in exactly the sme way.

Introduced in Lustre 2.633.6.5.
 Token Bucket Filter (TBF) policy

The TBF (Token Bucket Filter) is a Lustre NRS policy which enables
 Lustre services to enforce the RPC rate limit on clients/jobs for QoS
 (Quality of Service) purposes.
Figure 33.1. The internal structure of TBF policy
[image: The internal structure of TBF policy]

When a RPC request arrives, TBF policy puts it to a waiting queue
 according to its classification. The classification of RPC requests is
 based on either NID or JobID of the RPC according to the configure of
 TBF. TBF policy maintains multiple queues in the system, one queue for
 each category in the classification of RPC requests. The requests waits
 for tokens in the FIFO queue before they have been handled so as to keep
 the RPC rates under the limits.
When Lustre services are too busy to handle all of the requests in
 time, all of the specified rates of the queues will not be satisfied.
 Nothing bad will happen except some of the RPC rates are slower than
 configured. In this case, the queue with higher rate will have an
 advantage over the queues with lower rates, but none of them will be
 starved.
To manage the RPC rate of queues, we don't need to set the rate of
 each queue manually. Instead, we define rules which TBF policy matches to
 determine RPC rate limits. All of the defined rules are organized as an
 ordered list. Whenever a queue is newly created, it goes though the rule
 list and takes the first matched rule as its rule, so that the queue
 knows its RPC token rate. A rule can be added to or removed from the list
 at run time. Whenever the list of rules is changed, the queues will
 update their matched rules.
33.6.5.1. Enable TBF policy

Command:
lctl set_param ost.OSS.ost_io.nrs_policies="tbf <policy>"
	
For now, the RPCs can be classified into the different types
	according to their NID, JOBID, OPCode and UID/GID. When enabling TBF
	policy, you can specify one of the types, or just use "tbf" to enable
	all of them to do a fine-grained RPC requests classification.
Example:
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf nid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf jobid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf opcode"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf uid"
$ lctl set_param ost.OSS.ost_io.nrs_policies="tbf gid"

33.6.5.2. Start a TBF rule

The TBF rule is defined in the parameter
	ost.OSS.ost_io.nrs_tbf_rule.
Command:
lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name arguments..."
	
'rule_name' is a string of the TBF
	policy rule's name and 'arguments' is a
	string to specify the detailed rule according to the different types.
	
Next, the different types of TBF policies will be described.
	NID based TBF policy
Command:
lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name nid={nidlist} rate=rate"
	
'nidlist' uses the same format
	 as configuring LNET route. 'rate' is
	 the (upper limit) RPC rate of the rule.
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start other_clients nid={192.168.*.*@tcp} rate=50"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start computes nid={192.168.1.[2-128]@tcp} rate=500"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start loginnode nid={192.168.1.1@tcp} rate=100"
In this example, the rate of processing RPC requests from
	 compute nodes is at most 5x as fast as those from login nodes.
	 The output of ost.OSS.ost_io.nrs_tbf_rule is
	 like:
lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
loginnode {192.168.1.1@tcp} 100, ref 0
computes {192.168.1.[2-128]@tcp} 500, ref 0
other_clients {192.168.*.*@tcp} 50, ref 0
default {*} 10000, ref 0
high_priority_requests:
CPT 0:
loginnode {192.168.1.1@tcp} 100, ref 0
computes {192.168.1.[2-128]@tcp} 500, ref 0
other_clients {192.168.*.*@tcp} 50, ref 0
default {*} 10000, ref 0
Also, the rule can be written in reg and
	 hp formats:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start loginnode nid={192.168.1.1@tcp} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start loginnode nid={192.168.1.1@tcp} rate=100"

	JobID based TBF policy
For the JobID, please see
 Section 12.2, “

Lustre Jobstats” for more details.
Command:
lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name jobid={jobid_list} rate=rate"
	
Wildcard is supported in
	 {jobid_list}.
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user jobid={iozone.500} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start dd_user jobid={dd.*} rate=50"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 jobid={*.600} rate=10"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user2 jobid={io*.10* *.500} rate=200"
Also, the rule can be written in reg and
	 hp formats:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start iozone_user1 jobid={iozone.500} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start iozone_user1 jobid={iozone.500} rate=100"

	Opcode based TBF policy
Command:
$ lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] start rule_name opcode={opcode_list} rate=rate"
	
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 opcode={ost_read} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user1 opcode={ost_read ost_write} rate=200"
Also, the rule can be written in reg and
	 hp formats:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp start iozone_user1 opcode={ost_read} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg start iozone_user1 opcode={ost_read} rate=100"

	UID/GID based TBF policy
Command:
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"[reg][hp] start rule_name uid={uid} rate=rate"
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"[reg][hp] start rule_name gid={gid} rate=rate"
Exapmle:
Limit the rate of RPC requests of the uid 500
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name uid={500} rate=100"
Limit the rate of RPC requests of the gid 500
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name gid={500} rate=100"
Also, you can use the following rule to control all reqs
	 to mds:
Start the tbf uid QoS on MDS:
$ lctl set_param mds.MDS.*.nrs_policies="tbf uid"
Limit the rate of RPC requests of the uid 500
$ lctl set_param mds.MDS.*.nrs_tbf_rule=\
"start tbf_name uid={500} rate=100"

	Policy combination
To support TBF rules with complex expressions of conditions,
	 TBF classifier is extented to classify RPC in a more fine-grained
	 way. This feature supports logical conditional conjunction and
	 disjunction operations among different types.
	 In the rule:
	 "&" represents the conditional conjunction and
	 "," represents the conditional disjunction.
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start comp_rule opcode={ost_write}&jobid={dd.0},\
nid={192.168.1.[1-128]@tcp 0@lo} rate=100"
In this example, those RPCs whose opcode is
	 ost_write and jobid is dd.0, or
	 nid satisfies the condition of
	 {192.168.1.[1-128]@tcp 0@lo} will be processed at the rate of 100
	 req/sec.
	 The output of ost.OSS.ost_io.nrs_tbf_ruleis like:
	
$ lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
CPT 1:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
high_priority_requests:
CPT 0:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
CPT 1:
comp_rule opcode={ost_write}&jobid={dd.0},nid={192.168.1.[1-128]@tcp 0@lo} 100, ref 0
default * 10000, ref 0
Example:
$ lctl set_param ost.OSS.*.nrs_tbf_rule=\
"start tbf_name uid={500}&gid={500} rate=100"
In this example, those RPC requests whose uid is 500 and
	 gid is 500 will be processed at the rate of 100 req/sec.

33.6.5.3. Change a TBF rule

Command:
lctl set_param x.x.x.nrs_tbf_rule=
"[reg|hp] change rule_name rate=rate"

Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"change loginnode rate=200"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"reg change loginnode rate=200"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"hp change loginnode rate=200"

33.6.5.4. Stop a TBF rule

Command:
lctl set_param x.x.x.nrs_tbf_rule="[reg|hp] stop
rule_name"
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="stop loginnode"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="reg stop loginnode"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule="hp stop loginnode"

33.6.5.5. Rule options

To support more flexible rule conditions, the following options
	are added.
	Reordering of TBF rules
By default, a newly started rule is prior to the old ones,
	 but by specifying the argument 'rank=' when
	 inserting a new rule with "start" command,
	 the rank of the rule can be changed. Also, it can be changed by
	 "change" command.
	
Command:
lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"start rule_name arguments... rank=obj_rule_name"
lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"change rule_name rate=rate rank=obj_rule_name"

By specifying the existing rule
	 'obj_rule_name', the new rule
	 'rule_name' will be moved to the front of
	 'obj_rule_name'.
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start computes nid={192.168.1.[2-128]@tcp} rate=500"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start user1 jobid={iozone.500 dd.500} rate=100"
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=\
"start iozone_user1 opcode={ost_read ost_write} rate=200 rank=computes"
In this example, rule "iozone_user1" is added to the front of
	 rule "computes". We can see the order by the following command:
	
$ lctl get_param ost.OSS.ost_io.nrs_tbf_rule
ost.OSS.ost_io.nrs_tbf_rule=
regular_requests:
CPT 0:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
CPT 1:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
high_priority_requests:
CPT 0:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0
CPT 1:
user1 jobid={iozone.500 dd.500} 100, ref 0
iozone_user1 opcode={ost_read ost_write} 200, ref 0
computes nid={192.168.1.[2-128]@tcp} 500, ref 0
default * 10000, ref 0

	TBF realtime policies under congestion
	
During TBF evaluation, we find that when the sum of I/O
	 bandwidth requirements for all classes exceeds the system capacity,
	 the classes with the same rate limits get less bandwidth than if
	 preconfigured evenly. The reason for this is the heavy load on a
	 congested server will result in some missed deadlines for some
	 classes. The number of the calculated tokens may be larger than 1
	 during dequeuing. In the original implementation, all classes are
	 equally handled to simply discard exceeding tokens.
Thus, a Hard Token Compensation (HTC) strategy has been
	 implemented. A class can be configured with the HTC feature by the
	 rule it matches. This feature means that requests in this kind of
	 class queues have high real-time requirements and that the bandwidth
	 assignment must be satisfied as good as possible. When deadline
	 misses happen, the class keeps the deadline unchanged and the time
	 residue(the remainder of elapsed time divided by 1/r) is compensated
	 to the next round. This ensures that the next idle I/O thread will
	 always select this class to serve until all accumulated exceeding
	 tokens are handled or there are no pending requests in the class
	 queue.
Command:
A new command format is added to enable the realtime feature
	 for a rule:
lctl set_param x.x.x.nrs_tbf_rule=\
"start rule_name arguments... realtime=1
Example:
$ lctl set_param ost.OSS.ost_io.nrs_tbf_rule=
"start realjob jobid={dd.0} rate=100 realtime=1
This example rule means the RPC requests whose JobID is dd.0
	 will be processed at the rate of 100req/sec in realtime.

Introduced in Lustre 2.1033.6.6.
 Delay policy

The NRS Delay policy seeks to perturb the timing of request
 processing at the PtlRPC layer, with the goal of simulating high server
 load, and finding and exposing timing related problems. When this policy
 is active, upon arrival of a request the policy will calculate an offset,
 within a defined, user-configurable range, from the request arrival
 time, to determine a time after which the request should be handled.
 The request is then stored using the cfs_binheap implementation,
 which sorts the request according to the assigned start time.
 Requests are removed from the binheap for handling once their start
 time has been passed.
The Delay policy can be enabled on all types of PtlRPC services,
 and has the following tunables that can be used to adjust its behavior:

	
 {service}.nrs_delay_min

The
 {service}.nrs_delay_min tunable controls the
 minimum amount of time, in seconds, that a request will be delayed by
 this policy. The default is 5 seconds. To read this value run:

lctl get_param {service}.nrs_delay_min
For example, to read the minimum delay set on the ost_io
 service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_min
ost.OSS.ost_io.nrs_delay_min=reg_delay_min:5
hp_delay_min:5
To set the minimum delay in RPC processing, run:

lctl set_param {service}.nrs_delay_min=0-65535
This will set the minimum delay time on a given service, for both
 regular and high-priority RPCs (if the PtlRPC service supports
 high-priority RPCs), to the indicated value.
For example, to set the minimum delay time on the ost_io service
 to 10, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_min=10
ost.OSS.ost_io.nrs_delay_min=10
For PtlRPC services that support high-priority RPCs, to set a
 different minimum delay time for regular and high-priority RPCs, run:

lctl set_param {service}.nrs_delay_min=reg_delay_min|hp_delay_min:0-65535

For example, to set the minimum delay time on the ost_io service
 for high-priority RPCs to 3, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_min=hp_delay_min:3
ost.OSS.ost_io.nrs_delay_min=hp_delay_min:3
Note, in all cases the minimum delay time cannot exceed the
 maximum delay time.

	
 {service}.nrs_delay_max

The
 {service}.nrs_delay_max tunable controls the
 maximum amount of time, in seconds, that a request will be delayed by
 this policy. The default is 300 seconds. To read this value run:

lctl get_param {service}.nrs_delay_max
For example, to read the maximum delay set on the ost_io
 service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_max
ost.OSS.ost_io.nrs_delay_max=reg_delay_max:300
hp_delay_max:300
To set the maximum delay in RPC processing, run:
lctl set_param {service}.nrs_delay_max=0-65535

This will set the maximum delay time on a given service, for both
 regular and high-priority RPCs (if the PtlRPC service supports
 high-priority RPCs), to the indicated value.
For example, to set the maximum delay time on the ost_io service
 to 60, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_max=60
ost.OSS.ost_io.nrs_delay_max=60
For PtlRPC services that support high-priority RPCs, to set a
 different maximum delay time for regular and high-priority RPCs, run:

lctl set_param {service}.nrs_delay_max=reg_delay_max|hp_delay_max:0-65535
For example, to set the maximum delay time on the ost_io service
 for high-priority RPCs to 30, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_max=hp_delay_max:30
ost.OSS.ost_io.nrs_delay_max=hp_delay_max:30
Note, in all cases the maximum delay time cannot be less than the
 minimum delay time.

	
 {service}.nrs_delay_pct

The
 {service}.nrs_delay_pct tunable controls the
 percentage of requests that will be delayed by this policy. The
 default is 100. Note, when a request is not selected for handling by
 the delay policy due to this variable then the request will be handled
 by whatever fallback policy is defined for that service. If no other
 fallback policy is defined then the request will be handled by the
 FIFO policy. To read this value run:
lctl get_param {service}.nrs_delay_pct
For example, to read the percentage of requests being delayed on
 the ost_io service, run:

$ lctl get_param ost.OSS.ost_io.nrs_delay_pct
ost.OSS.ost_io.nrs_delay_pct=reg_delay_pct:100
hp_delay_pct:100
To set the percentage of delayed requests, run:

lctl set_param {service}.nrs_delay_pct=0-100
This will set the percentage of requests delayed on a given
 service, for both regular and high-priority RPCs (if the PtlRPC service
 supports high-priority RPCs), to the indicated value.
For example, to set the percentage of delayed requests on the
 ost_io service to 50, run:

$ lctl set_param ost.OSS.ost_io.nrs_delay_pct=50
ost.OSS.ost_io.nrs_delay_pct=50

For PtlRPC services that support high-priority RPCs, to set a
 different delay percentage for regular and high-priority RPCs, run:

lctl set_param {service}.nrs_delay_pct=reg_delay_pct|hp_delay_pct:0-100

For example, to set the percentage of delayed requests on the
 ost_io service for high-priority RPCs to 5, run:
$ lctl set_param ost.OSS.ost_io.nrs_delay_pct=hp_delay_pct:5
ost.OSS.ost_io.nrs_delay_pct=hp_delay_pct:5

33.7.
 Lockless I/O Tunables

The lockless I/O tunable feature allows servers to ask clients to do
 lockless I/O (the server does the locking on behalf of clients) for
 contended files to avoid lock ping-pong.
The lockless I/O patch introduces these tunables:
	
 OST-side:

ldlm.namespaces.filter-fsname-*.

 contended_locks- If the number of lock conflicts in
 the scan of granted and waiting queues at contended_locks is exceeded,
 the resource is considered to be contended.

 contention_seconds- The resource keeps itself in a
 contended state as set in the parameter.

 max_nolock_bytes- Server-side locking set only for
 requests less than the blocks set in the
 max_nolock_bytes parameter. If this tunable is
 set to zero (0), it disables server-side locking for read/write
 requests.

	
 Client-side:

/proc/fs/lustre/llite/lustre-*

 contention_seconds-
 llite inode remembers its contended state for the
 time specified in this parameter.

	
 Client-side statistics:

The
 /proc/fs/lustre/llite/lustre-*/stats file has new
 rows for lockless I/O statistics.

 lockless_read_bytes and
 lockless_write_bytes- To count the total bytes read
 or written, the client makes its own decisions based on the request
 size. The client does not communicate with the server if the request
 size is smaller than the
 min_nolock_size, without acquiring locks by the
 client.

33.8.

 Server-Side Advice and Hinting

33.8.1. Overview

Use the lfs ladvise command to give file access
 advices or hints to servers.
lfs ladvise [--advice|-a ADVICE] [--background|-b]
[--start|-s START[kMGT]]
{[--end|-e END[kMGT]] | [--length|-l LENGTH[kMGT]]}
file ...

	
 Option

 	
 Description

	
 -a, --advice=
 ADVICE

 	
 Give advice or hint of type ADVICE.
 Advice types are:

 willread to prefetch data into server
 cache

 dontneed to cleanup data cache on
 server

 lockahead Request an LDLM extent lock
 of the given mode on the given byte range

 noexpand Disable extent lock expansion
 behavior for I/O to this file descriptor

	
 -b, --background

 	
 Enable the advices to be sent and handled asynchronously.

	
 -s, --start=
 START_OFFSET

 	
 File range starts from START_OFFSET

	
 -e, --end=
 END_OFFSET

 	
 File range ends at (not including)
 END_OFFSET. This option may not be
 specified at the same time as the -l
 option.

	
 -l, --length=
 LENGTH

 	
 File range has length of LENGTH.
 This option may not be specified at the same time as the
 -e option.

	
 -m, --mode=
 MODE

 	
 Lockahead request mode {READ,WRITE}.
 Request a lock with this mode.

Typically, lfs ladvise forwards the advice to
 Lustre servers without guaranteeing when and what servers will react to
 the advice. Actions may or may not triggered when the advices are
 recieved, depending on the type of the advice, as well as the real-time
 decision of the affected server-side components.
A typical usage of ladvise is to enable applications and users with
 external knowledge to intervene in server-side cache management. For
 example, if a bunch of different clients are doing small random reads of a
 file, prefetching pages into OSS cache with big linear reads before the
 random IO is a net benefit. Fetching that data into each client cache with
 fadvise() may not be, due to much more data being sent to the client.

 ladvise lockahead is different in that it attempts to
 control LDLM locking behavior by explicitly requesting LDLM locks in
 advance of use. This does not directly affect caching behavior, instead
 it is used in special cases to avoid pathological results (lock exchange)
 from the normal LDLM locking behavior.

 Note that the noexpand advice works on a specific
 file descriptor, so using it via lfs has no effect. It must be used
 on a particular file descriptor which is used for i/o to have any effect.

The main difference between the Linux fadvise()
 system call and lfs ladvise is that
 fadvise() is only a client side mechanism that does
 not pass the advice to the filesystem, while ladvise
 can send advices or hints to the Lustre server side.

33.8.2. Examples

The following example gives the OST(s) holding the first 1GB of
 /mnt/lustre/file1a hint that the first 1GB of the
 file will be read soon.
client1$ lfs ladvise -a willread -s 0 -e 1048576000 /mnt/lustre/file1

The following example gives the OST(s) holding the first 1GB of
 /mnt/lustre/file1 a hint that the first 1GB of file
 will not be read in the near future, thus the OST(s) could clear the
 cache of the file in the memory.
client1$ lfs ladvise -a dontneed -s 0 -e 1048576000 /mnt/lustre/file1

The following example requests an LDLM read lock on the first
	1 MiB of /mnt/lustre/file1. This will attempt to
	request a lock from the OST holding that region of the file.
client1$ lfs ladvise -a lockahead -m READ -s 0 -e 1M /mnt/lustre/file1

The following example requests an LDLM write lock on
	[3 MiB, 10 MiB] of /mnt/lustre/file1. This will
	attempt to request a lock from the OST holding that region of the
	file.
client1$ lfs ladvise -a lockahead -m WRITE -s 3M -e 10M /mnt/lustre/file1

33.9.

 Large Bulk IO (16MB RPC)

33.9.1. Overview

Beginning with Lustre 2.9, Lustre is extended to support RPCs up
 to 16MB in size. By enabling a larger RPC size, fewer RPCs will be
 required to transfer the same amount of data between clients and
 servers. With a larger RPC size, the OSS can submit more data to the
 underlying disks at once, therefore it can produce larger disk I/Os
 to fully utilize the increasing bandwidth of disks.
At client connection time, clients will negotiate with
 servers what the maximum RPC size it is possible to use, but the
	 client can always send RPCs smaller than this maximum.
The parameter brw_size is used on the OST
	 to tell the client the maximum (preferred) IO size. All clients that
 talk to this target should never send an RPC greater than this size.
	 Clients can individually set a smaller RPC size limit via the
	 osc.*.max_pages_per_rpc tunable.

Note
The smallest brw_size that can be set for
	 ZFS OSTs is the recordsize of that dataset. This
	 ensures that the client can always write a full ZFS file block if it
	 has enough dirty data, and does not otherwise force it to do read-
	 modify-write operations for every RPC.

33.9.2. Usage

In order to enable a larger RPC size,
 brw_size must be changed to an IO size value up to
 16MB. To temporarily change brw_size, the
 following command should be run on the OSS:
oss# lctl set_param obdfilter.fsname-OST*.brw_size=16
To persistently change brw_size, the
 following command should be run:
oss# lctl set_param -P obdfilter.fsname-OST*.brw_size=16
When a client connects to an OST target, it will fetch
 brw_size from the target and pick the maximum value
 of brw_size and its local setting for
 max_pages_per_rpc as the actual RPC size.
 Therefore, the max_pages_per_rpc on the client side
 would have to be set to 16M, or 4096 if the PAGESIZE is 4KB, to enable
 a 16MB RPC. To temporarily make the change, the following command
 should be run on the client to set
 max_pages_per_rpc:
client$ lctl set_param osc.fsname-OST*.max_pages_per_rpc=16M
To persistently make this change, the following command should
 be run:
client$ lctl set_param -P obdfilter.fsname-OST*.osc.max_pages_per_rpc=16M
Caution
The brw_size of an OST can be
 changed on the fly. However, clients have to be remounted to
 renegotiate the new maximum RPC size.

33.10.
 Improving Lustre I/O Performance for Small Files

An environment where an application writes small file chunks from
 many clients to a single file can result in poor I/O performance. To
 improve the performance of the Lustre file system with small files:
	Have the application aggregate writes some amount before
 submitting them to the Lustre file system. By default, the Lustre
 software enforces POSIX coherency semantics, so it results in lock
 ping-pong between client nodes if they are all writing to the same
 file at one time.
Using MPI-IO Collective Write functionality in
 the Lustre ADIO driver is one way to achieve this in a straight
 forward manner if the application is already using MPI-IO.

	Have the application do 4kB
 O_DIRECT sized I/O to the file and disable locking
 on the output file. This avoids partial-page IO submissions and, by
 disabling locking, you avoid contention between clients.

	Have the application write contiguous data.

	Add more disks or use SSD disks for the OSTs. This dramatically
 improves the IOPS rate. Consider creating larger OSTs rather than many
 smaller OSTs due to less overhead (journal, connections, etc).

	Use RAID-1+0 OSTs instead of RAID-5/6. There is RAID parity
 overhead for writing small chunks of data to disk.

33.11.
 Understanding Why Write Performance is Better Than Read
 Performance

Typically, the performance of write operations on a Lustre cluster is
 better than read operations. When doing writes, all clients are sending
 write RPCs asynchronously. The RPCs are allocated, and written to disk in
 the order they arrive. In many cases, this allows the back-end storage to
 aggregate writes efficiently.
In the case of read operations, the reads from clients may come in a
 different order and need a lot of seeking to get read from the disk. This
 noticeably hampers the read throughput.
Currently, there is no readahead on the OSTs themselves, though the
 clients do readahead. If there are lots of clients doing reads it would not
 be possible to do any readahead in any case because of memory consumption
 (consider that even a single RPC (1 MB) readahead for 1000 clients would
 consume 1 GB of RAM).
For file systems that use socklnd (TCP, Ethernet) as interconnect,
 there is also additional CPU overhead because the client cannot receive
 data without copying it from the network buffers. In the write case, the
 client CAN send data without the additional data copy. This means that the
 client is more likely to become CPU-bound during reads than writes.

Chapter 34. Lustre File System Troubleshooting

This chapter provides information about troubleshooting a Lustre file system, submitting a
 bug to the Jira bug tracking system, and Lustre file system performance tips. It includes the
 following sections:
	Section 34.1, “

 Lustre Error Messages”

	Section 34.2, “Reporting a Lustre File System Bug”

	Section 34.3, “Common Lustre File System Problems”

34.1.

 Lustre Error Messages

Several resources are available to help troubleshoot an issue in a Lustre file system.
 This section describes error numbers, error messages and logs.
34.1.1. Error Numbers

Error numbers are generated by the Linux operating system and are located in
 /usr/include/asm-generic/errno.h. The Lustre software does not use all
 of the available Linux error numbers. The exact meaning of an error number depends on where
 it is used. Here is a summary of the basic errors that Lustre file system users may
 encounter.
	
 Error Number

 	
 Error Name

 	
 Description

	
 -1

 	
 -EPERM
 	
 Permission is denied.

	 -2 	
 -ENOENT
 	
 The requested file or directory does not exist.

	
 -4

 	
 -EINTR
 	
 The operation was interrupted (usually CTRL-C or a killing process).

	
 -5

 	
 -EIO
 	
 The operation failed with a read or write error.

	
 -19

 	
 -ENODEV
 	
 No such device is available. The server stopped or failed over.

	
 -22

 	
 -EINVAL
 	
 The parameter contains an invalid value.

	
 -28

 	
 -ENOSPC
 	
 The file system is out-of-space or out of inodes. Use lfs df (query the amount of file system space) or lfs df -i (query the number of inodes).

	
 -30

 	
 -EROFS
 	
 The file system is read-only, likely due to a detected error.

	
 -43

 	
 -EIDRM
 	
 The UID/GID does not match any known UID/GID on the MDS. Update etc/hosts and etc/group on the MDS to add the missing user or group.

	
 -107

 	
 -ENOTCONN
 	
 The client is not connected to this server.

	
 -110

 	
 -ETIMEDOUT
 	
 The operation took too long and timed out.

	
 -122

 	
 -EDQUOT
 	
 The operation exceeded the user disk quota and was aborted.

34.1.2. Viewing Error Messages

As Lustre software code runs on the kernel, single-digit error codes display to the
 application; these error codes are an indication of the problem. Refer to the kernel console
 log (dmesg) for all recent kernel messages from that node. On the node,
 /var/log/messages holds a log of all messages for at least the past
 day.
The error message initiates with "LustreError" in the console log and provides a short description of:
	What the problem is

	Which process ID had trouble

	Which server node it was communicating with, and so on.

Lustre logs are dumped to /proc/sys/lnet/debug_path.
Collect the first group of messages related to a problem, and any messages that precede "LBUG" or "assertion failure" errors. Messages that mention server nodes (OST or MDS) are specific to that server; you must collect similar messages from the relevant server console logs.
Another Lustre debug log holds information for a short period of time for action by the
 Lustre software, which, in turn, depends on the processes on the Lustre node. Use the
 following command to extract debug logs on each of the nodes, run
$ lctl dk filename
Note
LBUG freezes the thread to allow capture of the panic stack. A system reboot is needed to clear the thread.

34.2. Reporting a Lustre File System Bug

If you cannot resolve a problem by troubleshooting your Lustre file
 system, other options are:
	Post a question to the lustre-discuss
 email list or search the archives for information about your issue.

	Submit a ticket to the Jira*
 bug tracking and project management tool used for the Lustre project.
 If you are a first-time user, you'll need to open an account by
 clicking on Sign up on the
 Welcome page.

 To submit a Jira ticket, follow these steps:
	To avoid filing a duplicate ticket, search for existing
 tickets for your issue.
 For search tips, see
 Section 34.2.1, “Searching Jira*for Duplicate Tickets”.

	To create a ticket, click +Create Issue in the
 upper right corner. Create a separate ticket for each issue you
 wish to submit.

	In the form displayed, enter the following information:
	Project - Select Lustre or Lustre Documentation or
 an appropriate project.

	Issue type - Select Bug.

	Summary - Enter a short description of the
 issue. Use terms that would be useful for someone searching for a similar issue. A
 LustreError or ASSERT/panic message often makes a good summary.

	Affects version(s) - Select your Lustre
 release.

	Environment - Enter your kernel with
 version number.

	Description - Include a detailed
 description of visible symptoms and, if
 possible, how the problem is produced. Other
 useful information may include the behavior you expect to
 see and what you have tried so far to
 diagnose the problem.

	Attachments - Attach log sources such as
 Lustre debug log dumps (see Section 36.1, “
Diagnostic and Debugging Tools”), syslogs, or console logs. Note: Lustre debug
 logs must be processed using lctl df prior to attaching to a Jira
 ticket. For more information, see Section 36.2.2, “Using the lctl Tool to View Debug Messages”.

Other fields in the form are used for project tracking and are irrelevant
 to reporting an issue. You can leave these in their default state.

34.2.1. Searching Jira*for Duplicate Tickets

Before submitting a ticket, always search the Jira bug tracker for
 an existing ticket for your issue. This avoids duplicating effort and
 may immediately provide you with a solution to your problem.
To do a search in the Jira bug tracker, select the
 Issues tab and click on
 New filter. Use the filters provided
 to select criteria for your search. To search for specific text, enter
 the text in the "Contains text" field and click the magnifying glass
 icon.
When searching for text such as an ASSERTION or LustreError
 message, you can remove NIDs, pointers, and other installation-specific
 and possibly version-specific text from your search string such as line
 numbers by following the example below.
Original error message:
"(filter_io_26.c:
 791:filter_commitrw_write())
 ASSERTION(oti->oti_transno<=obd->obd_last_committed) failed:
 oti_transno 752
 last_committed 750
 "
Optimized search string
filter_commitrw_write ASSERTION oti_transno
 obd_last_committed failed:

34.3. Common Lustre File System Problems

This section describes how to address common issues encountered with
 a Lustre file system.
34.3.1. OST Object is Missing or Damaged

If the OSS fails to find an object or finds a damaged object,
 this message appears:
OST object missing or damaged (OST "ost1", object 98148, error -2)
If the reported error is -2 (-ENOENT, or
 "No such file or directory"), then the object is no longer
 present on the OST, even though a file on the MDT is referencing it.
 This can occur either because the MDT and OST are out of sync, or
 because an OST object was corrupted and deleted by e2fsck.
If you have recovered the file system from a disk failure by using
 e2fsck, then unrecoverable objects may have been deleted or moved to
 /lost+found in the underlying OST filesystem. Because files on the MDT
 still reference these objects, attempts to access them produce this
 error.
If you have restored the filesystem from a backup of the raw MDT
 or OST partition, then the restored partition is very likely to be out
 of sync with the rest of your cluster. No matter which server partition
 you restored from backup, files on the MDT may reference objects which
 no longer exist (or did not exist when the backup was taken); accessing
 those files produces this error.
If neither of those descriptions is applicable to your situation,
 then it is possible that you have discovered a programming error that
 allowed the servers to get out of sync.
 Please submit a Jira ticket (see Section 34.2, “Reporting a Lustre File System Bug”).
If the reported error is anything else (such as -5,
 "I/O error"), it likely indicates a storage
 device failure. The low-level file system returns this error if it is
 unable to read from the storage device.
Suggested Action
If the reported error is -2, you can consider checking in
 lost+found/ on your raw OST device, to see if the
 missing object is there. However, it is likely that this object is
 lost forever, and that the file that references the object is now
 partially or completely lost. Restore this file from backup, or
 salvage what you can using dd conv=noerrorand
 delete it using the unlink command.
If the reported error is anything else, then you should
 immediately inspect this server for storage problems.

34.3.2. OSTs Become Read-Only

If the SCSI devices are inaccessible to the Lustre file system
 at the block device level, then ldiskfs remounts
 the device read-only to prevent file system corruption. This is a normal
 behavior. The status in /proc/fs/lustre/health_check
 also shows "not healthy" on the affected nodes.
To determine what caused the "not healthy" condition:
	Examine the consoles of all servers for any error indications

	Examine the syslogs of all servers for any LustreErrors or LBUG

	Check the health of your system hardware and network. (Are the disks working as expected, is the network dropping packets?)

	Consider what was happening on the cluster at the time. Does this relate to a specific user workload or a system load condition? Is the condition reproducible? Does it happen at a specific time (day, week or month)?

To recover from this problem, you must restart Lustre services using these file systems. There is no other way to know that the I/O made it to disk, and the state of the cache may be inconsistent with what is on disk.

34.3.3. Identifying a Missing OST

If an OST is missing for any reason, you may need to know what files are affected. Although an OST is missing, the files system should be operational. From any mounted client node, generate a list of files that reside on the affected OST. It is advisable to mark the missing OST as 'unavailable' so clients and the MDS do not time out trying to contact it.
	Generate a list of devices and determine the OST's device number. Run:
$ lctl dl
The lctl dl command output lists the device name and number, along with the device UUID and the number of references on the device.

	Deactivate the OST (on the OSS at the MDS). Run:
$ lctl --device lustre_device_number deactivate
The OST device number or device name is generated by the lctl dl command.
The deactivate command prevents clients from creating new objects on the specified OST, although you can still access the OST for reading.
Note
If the OST later becomes available it needs to be reactivated, run:
lctl --device lustre_device_number activate

	Determine all files that are striped over the missing OST, run:
lfs find -O {OST_UUID} /mountpoint
This returns a simple list of filenames from the affected file system.

	If necessary, you can read the valid parts of a striped file, run:
dd if=filename of=new_filename bs=4k conv=sync,noerror

	You can delete these files with the unlink command.
unlink filename {filename ...}
Note
When you run the unlink command, it may
 return an error that the file could not be found, but the file
 on the MDS has been permanently removed.

If the file system cannot be mounted, currently there is no way
 that parses metadata directly from an MDS. If the bad OST does not
 start, options to mount the file system are to provide a loop device
 OST in its place or replace it with a newly-formatted OST. In that case,
 the missing objects are created and are read as zero-filled.

34.3.4. Fixing a Bad LAST_ID on an OST

Each OST contains a LAST_ID file, which holds
 the last object (pre-)created by the MDS
 [2].
 The MDT contains a lov_objid file, with values
 that represent the last object the MDS has allocated to a file.
During normal operation, the MDT keeps pre-created (but unused)
 objects on the OST, and normally LAST_ID should be
 larger than lov_objid. Any small difference in the
 values is a result of objects being precreated on the OST to improve
 MDS file creation performance. These precreated objects are not yet
 allocated to a file, since they are of zero length (empty).
However, in the case where lov_objid is
 larger than LAST_ID, it indicates the MDS has
 allocated objects to files that do not exist on the OST. Conversely,
 if lov_objid is significantly less than
 LAST_ID (by at least 20,000 objects) it indicates
 the OST previously allocated objects at the request of the MDS (which
 likely contain data) but it doesn't know about them.
Introduced in Lustre 2.5Since Lustre 2.5 the MDS and OSS will resync the
 lov_objid and LAST_ID files
 automatically if they become out of sync. This may result in some
 space on the OSTs becoming unavailable until LFSCK is next run, but
 avoids issues with mounting the filesystem.

Introduced in Lustre 2.6Since Lustre 2.6 the LFSCK will repair the
 LAST_ID file on the OST automatically based on
 the objects that exist on the OST, in case it was corrupted.

In situations where there is on-disk corruption of the OST, for
 example caused by the disk write cache being lost, or if the OST
 was restored from an old backup or reformatted, the
 LAST_ID value may become inconsistent and result
 in a message similar to:
"myth-OST0002: Too many FIDs to precreate,
OST replaced or reformatted: LFSCK will clean up"
A related situation may happen if there is a significant
 discrepancy between the record of previously-created objects on the
 OST and the previously-allocated objects on the MDT, for example if
 the MDT has been corrupted, or restored from backup, which would cause
 significant data loss if left unchecked. This produces a message
 like:
"myth-OST0002: too large difference between
MDS LAST_ID [0x1000200000000:0x100048:0x0] (1048648) and
OST LAST_ID [0x1000200000000:0x2232123:0x0] (35856675), trust the OST"
In such cases, the MDS will advance the lov_objid
 value to match that of the OST to avoid deleting existing objects,
 which may contain data. Files on the MDT that reference these objects
 will not be lost. Any unreferenced OST objects will be attached to
 the .lustre/lost+found directory the next time
 LFSCK layout check is run.

34.3.5. Handling/Debugging "Bind: Address already in use" Error

During startup, the Lustre software may report a bind: Address already in
 use error and reject to start the operation. This is caused by a portmap service
 (often NFS locking) that starts before the Lustre file system and binds to the default port
 988. You must have port 988 open from firewall or IP tables for incoming connections on the
 client, OSS, and MDS nodes. LNet will create three outgoing connections on available,
 reserved ports to each client-server pair, starting with 1023, 1022 and 1021.
Unfortunately, you cannot set sunprc to avoid port 988. If you receive this error, do the following:
	Start the Lustre file system before starting any service that uses sunrpc.

	Use a port other than 988 for the Lustre file system. This is configured in
 /etc/modprobe.d/lustre.conf as an option to the LNet module. For
 example:
options lnet accept_port=988

	Add modprobe ptlrpc to your system startup scripts before the service that uses
 sunrpc. This causes the Lustre file system to bind to port 988 and sunrpc to select a
 different port.

Note
You can also use the sysctl command to mitigate the NFS client from grabbing the Lustre service port. However, this is a partial workaround as other user-space RPC servers still have the ability to grab the port.

34.3.6. Handling/Debugging Error "- 28"

A Linux error -28 (ENOSPC) that occurs during
 a write or sync operation indicates that an existing file residing
 on an OST could not be rewritten or updated because the OST was full,
 or nearly full. To verify if this is the case, run on a client:

client$ lfs df -h
UUID bytes Used Available Use% Mounted on
myth-MDT0000_UUID 12.9G 1.5G 10.6G 12% /myth[MDT:0]
myth-OST0000_UUID 3.6T 3.1T 388.9G 89% /myth[OST:0]
myth-OST0001_UUID 3.6T 3.6T 64.0K 100% /myth[OST:1]
myth-OST0002_UUID 3.6T 3.1T 394.6G 89% /myth[OST:2]
myth-OST0003_UUID 5.4T 5.0T 267.8G 95% /myth[OST:3]
myth-OST0004_UUID 5.4T 2.9T 2.2T 57% /myth[OST:4]

filesystem_summary: 21.6T 17.8T 3.2T 85% /myth

To address this issue, you can expand the disk space on the OST,
 or use the lfs_migrate command to migrate (move)
 files to a less full OST. For details on both of these options
 see Section 14.8, “
Adding a New OST to a Lustre File System”
Introduced in Lustre 2.6In some cases, there may be processes holding
 files open that are consuming a significant amount of space (e.g.
 runaway process writing lots of data to an open file that has been
 deleted). It is possible to get a list of all open file handles in the
 filesystem from the MDS:

mds# lctl get_param mdt.*.exports.*.open_files
mdt.myth-MDT0000.exports.192.168.20.159@tcp.open_files=
[0x200003ab4:0x435:0x0]
[0x20001e863:0x1c1:0x0]
[0x20001e863:0x1c2:0x0]
:
:

 These file handles can be converted into pathnames on any client via
 the lfs fid2path command (as root):

client# lfs fid2path /myth [0x200003ab4:0x435:0x0] [0x20001e863:0x1c1:0x0] [0x20001e863:0x1c2:0x0]
lfs fid2path: cannot find '[0x200003ab4:0x435:0x0]': No such file or directory
/myth/tmp/4M
/myth/tmp/1G
:
:

	In some cases, if the file has been deleted from the filesystem,
	fid2path will return an error that the file is
	not found. You can use the client NID
	(192.168.20.159@tcp in the above example) to
	determine which node the file is open on, and lsof
	to find and kill the process that is holding the file open:
	

lsof /myth
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
logger 13806 mythtv 0r REG 35,632494 1901048576384 144115440203858997 /myth/logs/job.1283929.log (deleted)
	

A Linux error -28 (ENOSPC) that occurs when
 a new file is being created may indicate that the MDT has run out
 of inodes and needs to be made larger. Newly created files are not
 written to full OSTs, while existing files continue to reside on
 the OST where they were initially created. To view inode information
 on the MDT, run on a client:

lfs df -i
UUID Inodes IUsed IFree IUse% Mounted on
myth-MDT0000_UUID 1910263 1910263 0 100% /myth[MDT:0]
myth-OST0000_UUID 947456 360059 587397 89% /myth[OST:0]
myth-OST0001_UUID 948864 233748 715116 91% /myth[OST:1]
myth-OST0002_UUID 947456 549961 397495 89% /myth[OST:2]
myth-OST0003_UUID 1426144 477595 948549 95% /myth[OST:3]
myth-OST0004_UUID 1426080 465248 1420832 57% /myth[OST:4]

filesystem_summary: 1910263 1910263 0 100% /myth

Typically, the Lustre software reports this error to your
 application. If the application is checking the return code from
 its function calls, then it decodes it into a textual error message
 such as No space left on device. The numeric
 error message may also appear in the system log.
For more information about the lfs df command,
 see Section 19.6.1, “Checking File System Free Space”.
You can also use the lctl get_param command to
 monitor the space and object usage on the OSTs and MDTs from any
 client:
lctl get_param {osc,mdc}.*.{kbytes,files}{free,avail,total}

Note
You can find other numeric error codes along with a short name
 and text description in /usr/include/asm/errno.h.

34.3.7. Triggering Watchdog for PID NNN

In some cases, a server node triggers a watchdog timer and this causes a process stack to be dumped to the console along with a Lustre kernel debug log being dumped into /tmp (by default). The presence of a watchdog timer does NOT mean that the thread OOPSed, but rather that it is taking longer time than expected to complete a given operation. In some cases, this situation is expected.
For example, if a RAID rebuild is really slowing down I/O on an OST, it might trigger watchdog timers to trip. But another message follows shortly thereafter, indicating that the thread in question has completed processing (after some number of seconds). Generally, this indicates a transient problem. In other cases, it may legitimately signal that a thread is stuck because of a software error (lock inversion, for example).
Lustre: 0:0:(watchdog.c:122:lcw_cb())
The above message indicates that the watchdog is active for pid 933:
It was inactive for 100000ms:
Lustre: 0:0:(linux-debug.c:132:portals_debug_dumpstack())
Showing stack for process:
933 ll_ost_25 D F896071A 0 933 1 934 932 (L-TLB)
f6d87c60 00000046 00000000 f896071a f8def7cc 00002710 00001822 2da48cae
0008cf1a f6d7c220 f6d7c3d0 f6d86000 f3529648 f6d87cc4 f3529640 f8961d3d
00000010 f6d87c9c ca65a13c 00001fff 00000001 00000001 00000000 00000001
Call trace:
filter_do_bio+0x3dd/0xb90 [obdfilter]
default_wake_function+0x0/0x20
filter_direct_io+0x2fb/0x990 [obdfilter]
filter_preprw_read+0x5c5/0xe00 [obdfilter]
lustre_swab_niobuf_remote+0x0/0x30 [ptlrpc]
ost_brw_read+0x18df/0x2400 [ost]
ost_handle+0x14c2/0x42d0 [ost]
ptlrpc_server_handle_request+0x870/0x10b0 [ptlrpc]
ptlrpc_main+0x42e/0x7c0 [ptlrpc]

34.3.8. Handling Timeouts on Initial Lustre File System Setup

If you come across timeouts or hangs on the initial setup of your Lustre file system,
 verify that name resolution for servers and clients is working correctly. Some distributions
 configure /etc/hosts so the name of the local machine (as reported by the
 'hostname' command) is mapped to local host (127.0.0.1) instead of a proper IP
 address.
This might produce this error:
LustreError:(ldlm_handle_cancel()) received cancel for unknown lock cookie
0xe74021a4b41b954e from nid 0x7f000001 (0:127.0.0.1)

34.3.9. Handling/Debugging "LustreError: xxx went back in time"

Each time the Lustre software changes the state of the disk file system, it records a
 unique transaction number. Occasionally, when committing these transactions to the disk, the
 last committed transaction number displays to other nodes in the cluster to assist the
 recovery. Therefore, the promised transactions remain absolutely safe on the disappeared
 disk.
This situation arises when:
	You are using a disk device that claims to have data written to disk before it
 actually does, as in case of a device with a large cache. If that disk device crashes or
 loses power in a way that causes the loss of the cache, there can be a loss of
 transactions that you believe are committed. This is a very serious event, and you
 should run e2fsck against that storage before restarting the Lustre file system.

	As required by the Lustre software, the shared storage used for failover is
 completely cache-coherent. This ensures that if one server takes over for another, it
 sees the most up-to-date and accurate copy of the data. In case of the failover of the
 server, if the shared storage does not provide cache coherency between all of its ports,
 then the Lustre software can produce an error.

If you know the exact reason for the error, then it is safe to proceed with no further action. If you do not know the reason, then this is a serious issue and you should explore it with your disk vendor.
If the error occurs during failover, examine your disk cache settings. If it occurs after a restart without failover, try to determine how the disk can report that a write succeeded, then lose the Data Device corruption or Disk Errors.

34.3.10. Lustre Error: "Slow Start_Page_Write"

The slow start_page_write message appears when the operation takes an extremely long time to allocate a batch of memory pages. Use these pages to receive network traffic first, and then write to disk.

34.3.11. Drawbacks in Doing Multi-client O_APPEND Writes

It is possible to do multi-client O_APPEND writes to a single file, but there are few drawbacks that may make this a sub-optimal solution. These drawbacks are:
	 Each client needs to take an EOF lock on all the OSTs, as it is difficult to know which OST holds the end of the file until you check all the OSTs. As all the clients are using the same O_APPEND, there is significant locking overhead.

	 The second client cannot get all locks until the end of the writing of the first client, as the taking serializes all writes from the clients.

	 To avoid deadlocks, the taking of these locks occurs in a known, consistent order. As a client cannot know which OST holds the next piece of the file until the client has locks on all OSTS, there is a need of these locks in case of a striped file.

34.3.12. Slowdown Occurs During Lustre File System Startup

When a Lustre file system starts, it needs to read in data from the disk. For the very
 first mdsrate run after the reboot, the MDS needs to wait on all the OSTs for object
 pre-creation. This causes a slowdown to occur when the file system starts up.
After the file system has been running for some time, it contains more data in cache and hence, the variability caused by reading critical metadata from disk is mostly eliminated. The file system now reads data from the cache.

34.3.13. Log Message 'Out of Memory' on OST

When planning the hardware for an OSS node, consider the memory usage of several
 components in the Lustre file system. If insufficient memory is available, an 'out of
 memory' message can be logged.
During normal operation, several conditions indicate insufficient RAM on a server node:
	 kernel "Out of memory" and/or "oom-killer" messages

	 Lustre "kmalloc of 'mmm' (NNNN bytes) failed..." messages

	 Lustre or kernel stack traces showing processes stuck in "try_to_free_pages"

For information on determining the MDS memory and OSS memory requirements, see Section 5.5, “Determining Memory Requirements”.

34.3.14. Setting SCSI I/O Sizes

Some SCSI drivers default to a maximum I/O size that is too small for good Lustre file
 system performance. we have fixed quite a few drivers, but you may still find that some
 drivers give unsatisfactory performance with the Lustre file system. As the default value is
 hard-coded, you need to recompile the drivers to change their default. On the other hand,
 some drivers may have a wrong default set.
If you suspect bad I/O performance and an analysis of Lustre file system statistics
 indicates that I/O is not 1 MB, check
 /sys/block/device/queue/max_sectors_kb. If
 the max_sectors_kb value is less than 1024, set it to at least 1024 to
 improve performance. If changing max_sectors_kb does not change the I/O
 size as reported by the Lustre software, you may want to examine the SCSI driver
 code.

[2] The contents of the LAST_ID
 file must be accurate regarding the actual objects that exist
 on the OST.

Chapter 35. Troubleshooting
 Recovery

This chapter describes what to do if something goes wrong during
 recovery. It describes:
	
 Section 35.1, “
 Recovering from Errors or Corruption on a Backing ldiskfs File
 System”

	
 Section 35.2, “
 Recovering from Corruption in the Lustre File System”

	
 Section 35.3, “
 Recovering from an Unavailable OST”

	
 Section 35.4, “

 Checking the file system with LFSCK”

35.1.
 Recovering from Errors or Corruption on a Backing ldiskfs File
 System

When an OSS, MDS, or MGS server crash occurs, it is not necessary to
 run e2fsck on the file system.
 ldiskfs journaling ensures that the file system remains
 consistent over a system crash. The backing file systems are never accessed
 directly from the client, so client crashes are not relevant for server
 file system consistency.
The only time it is REQUIRED that
 e2fsck be run on a device is when an event causes
 problems that ldiskfs journaling is unable to handle, such as a hardware
 device failure or I/O error. If the ldiskfs kernel code detects corruption
 on the disk, it mounts the file system as read-only to prevent further
 corruption, but still allows read access to the device. This appears as
 error "-30" (
 EROFS) in the syslogs on the server, e.g.:
Dec 29 14:11:32 mookie kernel: LDISKFS-fs error (device sdz):
 ldiskfs_lookup: unlinked inode 5384166 in dir #145170469
Dec 29 14:11:32 mookie kernel: Remounting filesystem read-only
In such a situation, it is normally required that e2fsck only be run
 on the bad device before placing the device back into service.
In the vast majority of cases, the Lustre software can cope with any
 inconsistencies found on the disk and between other devices in the file
 system.
For problem analysis, it is strongly recommended that
 e2fsck be run under a logger, like
 script, to record all
 of the output and changes that are made to the file system in case this
 information is needed later.
If time permits, it is also a good idea to first run
 e2fsck in non-fixing mode (-n option) to assess the type
 and extent of damage to the file system. The drawback is that in this mode,
 e2fsck does not recover the file system journal, so there
 may appear to be file system corruption when none really exists.
To address concern about whether corruption is real or only due to
 the journal not being replayed, you can briefly mount and unmount the
 ldiskfs file system directly on the node with the Lustre
 file system stopped, using a command similar to:
mount -t ldiskfs /dev/{ostdev} /mnt/ost; umount /mnt/ost
This causes the journal to be recovered.
The
 e2fsck utility works well when fixing file system
 corruption (better than similar file system recovery tools and a primary
 reason why
 ldiskfs was chosen over other file systems). However, it
 is often useful to identify the type of damage that has occurred so an
 ldiskfs expert can make intelligent decisions about what
 needs fixing, in place of
 e2fsck.
root# {stop lustre services for this device, if running}
root# script /tmp/e2fsck.sda
Script started, file is /tmp/e2fsck.sda
root# mount -t ldiskfs /dev/sda /mnt/ost
root# umount /mnt/ost
root# e2fsck -fn /dev/sda # don't fix file system, just check for corruption
:
[e2fsck output]
:
root# e2fsck -fp /dev/sda # fix errors with prudent answers (usually yes)

35.2.
 Recovering from Corruption in the Lustre File System

In cases where an ldiskfs MDT or OST becomes corrupt, you need to run
 e2fsck to ensure local filesystem consistency, then use
 LFSCK to run a distributed check on the file system to
 resolve any inconsistencies between the MDTs and OSTs, or among MDTs.
	Stop the Lustre file system.

	Run
 e2fsck -f on the individual MDT/OST that had
 problems to fix any local file system damage.
We recommend running
 e2fsck under script, to create a log of changes made
 to the file system in case it is needed later. After
 e2fsck is run, bring up the file system, if
 necessary, to reduce the outage window.

35.2.1.
 Working with Orphaned Objects

The simplest problem to resolve is that of orphaned objects. When
 the LFSCK layout check is run, these objects are linked to new files and
 put into
 .lustre/lost+found/MDTxxxx
 in the Lustre file system
 (where MDTxxxx is the index of the MDT on which the orphan was found),
 where they can be examined and saved or deleted as necessary.
Introduced in Lustre 2.7With Lustre version 2.7 and later, LFSCK will
 identify and process orphan objects found on MDTs as well.

35.3.
 Recovering from an Unavailable OST

One problem encountered in a Lustre file system environment is when
 an OST becomes unavailable due to a network partition, OSS node crash, etc.
 When this happens, the OST's clients pause and wait for the OST to become
 available again, either on the primary OSS or a failover OSS. When the OST
 comes back online, the Lustre file system starts a recovery process to
 enable clients to reconnect to the OST. Lustre servers put a limit on the
 time they will wait in recovery for clients to reconnect.
During recovery, clients reconnect and replay their requests
 serially, in the same order they were done originally. Until a client
 receives a confirmation that a given transaction has been written to stable
 storage, the client holds on to the transaction, in case it needs to be
 replayed. Periodically, a progress message prints to the log, stating
 how_many/expected clients have reconnected. If the recovery is aborted,
 this log shows how many clients managed to reconnect. When all clients have
 completed recovery, or if the recovery timeout is reached, the recovery
 period ends and the OST resumes normal request processing.
If some clients fail to replay their requests during the recovery
 period, this will not stop the recovery from completing. You may have a
 situation where the OST recovers, but some clients are not able to
 participate in recovery (e.g. network problems or client failure), so they
 are evicted and their requests are not replayed. This would result in any
 operations on the evicted clients failing, including in-progress writes,
 which would cause cached writes to be lost. This is a normal outcome; the
 recovery cannot wait indefinitely, or the file system would be hung any
 time a client failed. The lost transactions are an unfortunate result of
 the recovery process.
Note
The failure of client recovery does not indicate or lead to
 filesystem corruption. This is a normal event that is handled by the MDT
 and OST, and should not result in any inconsistencies between
 servers.

Note
The version-based recovery (VBR) feature enables a failed client to
 be ''skipped'', so remaining clients can replay their requests, resulting
 in a more successful recovery from a downed OST. For more information
 about the VBR feature, see
 Chapter 37, Lustre File System Recovery(Version-based Recovery).

35.4.

 Checking the file system with LFSCK

LFSCK is an administrative tool for checking and repair of the
 attributes specific to a mounted Lustre file system. It is similar
 in concept to an offline fsck repair tool for a local filesystem,
 but LFSCK is implemented to run as part of the Lustre file system
 while the file system is mounted and in use. This allows consistency
 checking and repair of Lustre-specific metadata without unnecessary
 downtime, and can be run on the largest Lustre file systems with
 minimal impact to normal operations.
LFSCK can verify
 and repair the Object Index (OI) table that is used internally to map
 Lustre File Identifiers (FIDs) to MDT internal ldiskfs inode numbers, in
 an internal table called the OI Table. An OI Scrub traverses the OI table
 and makes corrections where necessary. An OI Scrub is required after
 restoring from a file-level MDT backup (
 Section 18.2, “
 Backing Up and Restoring an MDT or OST (ldiskfs Device Level)”), or in case the OI Table is
 otherwise corrupted. Later phases of LFSCK will add further checks to the
 Lustre distributed file system state.
Introduced in Lustre 2.4In Lustre software release 2.4, LFSCK namespace
 scanning can verify and repair the directory FID-in-dirent and LinkEA
 consistency.

Introduced in Lustre 2.6In Lustre software release 2.6, LFSCK layout scanning
 can verify and repair MDT-OST file layout inconsistencies. File layout
 inconsistencies between MDT-objects and OST-objects that are checked and
 corrected include dangling reference, unreferenced OST-objects, mismatched
 references and multiple references.

Introduced in Lustre 2.7In Lustre software release 2.7, LFSCK layout scanning
 is enhanced to support verify and repair inconsistencies between multiple
 MDTs.

Control and monitoring of LFSCK is through LFSCK and the
 /proc file system interfaces. LFSCK supports three types
 of interface: switch interface, status interface, and adjustment interface.
 These interfaces are detailed below.
35.4.1. LFSCK switch interface

35.4.1.1. Manually Starting LFSCK

35.4.1.1.1. Description

LFSCK can be started after the MDT is mounted using the
 lctl lfsck_start command.

35.4.1.1.2. Usage

lctl lfsck_start <-M | --device [MDT,OST]_device> \
 [-A | --all] \
 [-c | --create_ostobj on | off] \
 [-C | --create_mdtobj on | off] \
 [-d | --delay_create_ostobj on | off] \
 [-e | --error {continue | abort}] \
 [-h | --help] \
 [-n | --dryrun on | off] \
 [-o | --orphan] \
 [-r | --reset] \
 [-s | --speed ops_per_sec_limit] \
 [-t | --type check_type[,check_type...]] \
 [-w | --window_size size]

35.4.1.1.3. Options

The various
 lfsck_start options are listed and described below.
 For a complete list of available options, type
 lctl lfsck_start -h.
	

 Option

 	

 Description

	

 -M | --device

 	
 The MDT or OST target to start LFSCK on.

	

 -A | --all

 	
 Introduced in Lustre 2.6Start LFSCK on all
 targets on all servers simultaneously.
 By default, both layout and namespace
 consistency checking and repair are started.

	

 -c | --create_ostobj

 	
 Introduced in Lustre 2.6Create the lost OST-object for
 dangling LOV EA,
 off(default) or
 on. If not specified, then the default
 behaviour is to keep the dangling LOV EA there without
 creating the lost OST-object.

	

 -C | --create_mdtobj

 	
 Introduced in Lustre 2.7Create the lost MDT-object for
 dangling name entry,
 off(default) or
 on. If not specified, then the default
 behaviour is to keep the dangling name entry there without
 creating the lost MDT-object.

	

 -d | --delay_create_ostobj

 	
 Introduced in Lustre 2.9
 Delay creating the lost OST-object for dangling LOV EA
 until the orphan OST-objects are handled.
 off(default) or
 on.

	

 -e | --error

 	
 Error handle,
 continue(default) or
 abort. Specify whether the LFSCK will
 stop or not if fails to repair something. If it is not
 specified, the saved value (when resuming from checkpoint)
 will be used if present. This option cannot be changed
 while LFSCK is running.

	

 -h | --help

 	
 Operating help information.

	

 -n | --dryrun

 	
 Perform a trial without making any changes.
 off(default) or
 on.

	

 -o | --orphan

 	
 Introduced in Lustre 2.6Repair orphan OST-objects for layout
 LFSCK.

	

 -r | --reset

 	
 Reset the start position for the object iteration to
 the beginning for the specified MDT. By default the
 iterator will resume scanning from the last checkpoint
 (saved periodically by LFSCK) provided it is
 available.

	

 -s | --speed

 	
 Set the upper speed limit of LFSCK processing in
 objects per second. If it is not specified, the saved value
 (when resuming from checkpoint) or default value of 0 (0 =
 run as fast as possible) is used. Speed can be adjusted
 while LFSCK is running with the adjustment
 interface.

	

 -t | --type

 	
 The type of checking/repairing that should be
 performed. The new LFSCK framework provides a single
 interface for a variety of system consistency
 checking/repairing operations including:

 Without a specified option, the LFSCK component(s)
 which ran last time and did not finish or the component(s)
 corresponding to some known system inconsistency, will be
 started. Anytime the LFSCK is triggered, the OI scrub will
 run automatically, so there is no need to specify
 OI_scrub in that case.

 Introduced in Lustre 2.4
 namespace: check and repair
 FID-in-dirent and LinkEA consistency.

 Introduced in Lustre 2.7 Lustre-2.7 enhances
 namespace consistency verification under DNE mode.

 Introduced in Lustre 2.6
 layout: check and repair MDT-OST
 inconsistency.

	

 -w | --window_size

 	
 Introduced in Lustre 2.6The window size for the async request
 pipeline. The LFSCK async request pipeline's input/output
 may have quite different processing speeds, and there may
 be too many requests in the pipeline as to cause abnormal
 memory/network pressure. If not specified, then the default
 window size for the async request pipeline is 1024.

35.4.1.2. Manually Stopping LFSCK

35.4.1.2.1. Description

To stop LFSCK when the MDT is mounted, use the
 lctl lfsck_stop command.

35.4.1.2.2. Usage

lctl lfsck_stop <-M | --device [MDT,OST]_device> \
 [-A | --all] \
 [-h | --help]

35.4.1.2.3. Options

The various
 lfsck_stop options are listed and described below.
 For a complete list of available options, type
 lctl lfsck_stop -h.
	

 Option

 	

 Description

	

 -M | --device

 	
 The MDT or OST target to stop LFSCK on.

	

 -A | --all

 	
 Stop LFSCK on all targets on all servers
 simultaneously.

	

 -h | --help

 	
 Operating help information.

35.4.2. Check the LFSCK global status

35.4.2.1. Description

Check the LFSCK global status via a single
 lctl lfsck_query command on the MDS.

35.4.2.2. Usage

lctl lfsck_query <-M | --device MDT_device> \
 [-h | --help] \
 [-t | --type lfsck_type[,lfsck_type...]] \
 [-w | --wait]

35.4.2.3. Options

The various
 lfsck_query options are listed and described below.
 For a complete list of available options, type
 lctl lfsck_query -h.
	

 Option

 	

 Description

	

 -M | --device

 	
 The device to query for LFSCK status.

	

 -h | --help

 	
 Operating help information.

	

 -t | --type

 	
 The LFSCK type(s) that should be queried,
 including: layout, namespace.

	

 -w | --wait

 	
 will wait if the LFSCK is in scanning.

35.4.3. LFSCK status interface

35.4.3.1. LFSCK status of OI Scrub via
 procfs

35.4.3.1.1. Description

For each LFSCK component there is a dedicated procfs interface
 to trace the corresponding LFSCK component status. For OI Scrub, the
 interface is the OSD layer procfs interface, named
 oi_scrub. To display OI Scrub status, the standard
 lctl get_param command is used as shown in the
 usage below.

35.4.3.1.2. Usage

lctl get_param -n osd-ldiskfs.FSNAME-[MDT_target|OST_target].oi_scrub

35.4.3.1.3. Output

	

 Information

 	

 Detail

	
 General Information

 	
 	Name: OI_scrub.

	OI scrub magic id (an identifier unique to OI
 scrub).

	OI files count.

	Status: one of the status -
 init,
 scanning,
 completed,
 failed,
 stopped,
 paused, or
 crashed.

	Flags: including -
 recreated(OI file(s) is/are
 removed/recreated),
 inconsistent(restored from
 file-level backup),
 auto(triggered by non-UI mechanism),
 and
 upgrade(from Lustre software release
 1.8 IGIF format.)

	Parameters: OI scrub parameters, like
 failout.

	Time Since Last Completed.

	Time Since Latest Start.

	Time Since Last Checkpoint.

	Latest Start Position: the position for the
 latest scrub started from.

	Last Checkpoint Position.

	First Failure Position: the position for the
 first object to be repaired.

	Current Position.

	
 Statistics

 	
 	
 Checked total number of objects
 scanned.

	
 Updated total number of objects
 repaired.

	
 Failed total number of objects that
 failed to be repaired.

	
 No Scrub total number of objects
 marked
 LDISKFS_STATE_LUSTRE_NOSCRUB and
 skipped.

	
 IGIF total number of objects IGIF
 scanned.

	
 Prior Updated how many objects have
 been repaired which are triggered by parallel
 RPC.

	
 Success Count total number of
 completed OI_scrub runs on the target.

	
 Run Time how long the scrub has run,
 tally from the time of scanning from the beginning of
 the specified MDT target, not include the
 paused/failure time among checkpoints.

	
 Average Speed calculated by dividing
 Checked by
 run_time.

	
 Real-Time Speed the speed since last
 checkpoint if the OI_scrub is running.

	
 Scanned total number of objects under
 /lost+found that have been scanned.

	
 Repaired total number of objects
 under /lost+found that have been recovered.

	
 Failed total number of objects under
 /lost+found failed to be scanned or failed to be
 recovered.

Introduced in Lustre 2.435.4.3.2. LFSCK status of namespace via
 procfs

35.4.3.2.1. Description

The
 namespace component is responsible for checks
 described in Section 35.4, “

 Checking the file system with LFSCK”. The
 procfs interface for this component is in the
 MDD layer, named
 lfsck_namespace. To show the status of this
 component,
 lctl get_param should be used as described in the
 usage below.
The LFSCK namespace status output refers to phase 1 and phase 2.
 Phase 1 is when the LFSCK main engine, which runs on each MDT,
 linearly scans its local device, guaranteeing that all local objects
 are checked. However, there are certain cases in which LFSCK cannot
 know whether an object is consistent or cannot repair an inconsistency
 until the phase 1 scanning is completed. During phase 2 of the
 namespace check, objects with multiple hard-links, objects with remote
 parents, and other objects which couldn't be verified during phase 1
 will be checked.

35.4.3.2.2. Usage

lctl get_param -n mdd. FSNAME-MDT_target.lfsck_namespace

35.4.3.2.3. Output

	

 Information

 	

 Detail

	
 General Information

 	
 	Name:
 lfsck_namespace

	LFSCK namespace magic.

	LFSCK namespace version..

	Status: one of the status -
 init,
 scanning-phase1,
 scanning-phase2,
 completed,
 failed,
 stopped,
 paused,
 partial,
 co-failed,
 co-stopped or
 co-paused.

	Flags: including -
 scanned-once(the first cycle
 scanning has been completed),
 inconsistent(one or more
 inconsistent FID-in-dirent or LinkEA entries that have
 been discovered),
 upgrade(from Lustre software release
 1.8 IGIF format.)

	Parameters: including
 dryrun,
 all_targets,
 failout,
 broadcast,
 orphan,
 create_ostobj and
 create_mdtobj.

	Time Since Last Completed.

	Time Since Latest Start.

	Time Since Last Checkpoint.

	Latest Start Position: the position the checking
 began most recently.

	Last Checkpoint Position.

	First Failure Position: the position for the
 first object to be repaired.

	Current Position.

	
 Statistics

 	
 	
 Checked Phase1 total number of
 objects scanned during
 scanning-phase1.

	
 Checked Phase2 total number of
 objects scanned during
 scanning-phase2.

	
 Updated Phase1 total number of
 objects repaired during
 scanning-phase1.

	
 Updated Phase2 total number of
 objects repaired during
 scanning-phase2.

	
 Failed Phase1 total number of objets
 that failed to be repaired during
 scanning-phase1.

	
 Failed Phase2 total number of objets
 that failed to be repaired during
 scanning-phase2.

	
 directories total number of
 directories scanned.

	
 multiple_linked_checked total number
 of multiple-linked objects that have been
 scanned.

	
 dirent_repaired total number of
 FID-in-dirent entries that have been repaired.

	
 linkea_repaired total number of
 linkEA entries that have been repaired.

	
 unknown_inconsistency total number of
 undefined inconsistencies found in
 scanning-phase2.

	
 unmatched_pairs_repaired total number
 of unmatched pairs that have been repaired.

	
 dangling_repaired total number of
 dangling name entries that have been
 found/repaired.

	
 multi_referenced_repaired total
 number of multiple referenced name entries that have
 been found/repaired.

	
 bad_file_type_repaired total number
 of name entries with bad file type that have been
 repaired.

	
 lost_dirent_repaired total number of
 lost name entries that have been re-inserted.

	
 striped_dirs_scanned total number of
 striped directories (master) that have been
 scanned.

	
 striped_dirs_repaired total number of
 striped directories (master) that have been
 repaired.

	
 striped_dirs_failed total number of
 striped directories (master) that have failed to be
 verified.

	
 striped_dirs_disabled total number of
 striped directories (master) that have been
 disabled.

	
 striped_dirs_skipped total number of
 striped directories (master) that have been skipped
 (for shards verification) because of lost master LMV
 EA.

	
 striped_shards_scanned total number
 of striped directory shards (slave) that have been
 scanned.

	
 striped_shards_repaired total number
 of striped directory shards (slave) that have been
 repaired.

	
 striped_shards_failed total number of
 striped directory shards (slave) that have failed to be
 verified.

	
 striped_shards_skipped total number
 of striped directory shards (slave) that have been
 skipped (for name hash verification) because LFSCK does
 not know whether the slave LMV EA is valid or
 not.

	
 name_hash_repaired total number of
 name entries under striped directory with bad name hash
 that have been repaired.

	
 nlinks_repaired total number of
 objects with nlink fixed.

	
 mul_linked_repaired total number of
 multiple-linked objects that have been repaired.

	
 local_lost_found_scanned total number
 of objects under /lost+found that have been
 scanned.

	
 local_lost_found_moved total number
 of objects under /lost+found that have been moved to
 namespace visible directory.

	
 local_lost_found_skipped total number
 of objects under /lost+found that have been
 skipped.

	
 local_lost_found_failed total number
 of objects under /lost+found that have failed to be
 processed.

	
 Success Count the total number of
 completed LFSCK runs on the target.

	
 Run Time Phase1 the duration of the
 LFSCK run during
 scanning-phase1. Excluding the time
 spent paused between checkpoints.

	
 Run Time Phase2 the duration of the
 LFSCK run during
 scanning-phase2. Excluding the time
 spent paused between checkpoints.

	
 Average Speed Phase1 calculated by
 dividing
 checked_phase1 by
 run_time_phase1.

	
 Average Speed Phase2 calculated by
 dividing
 checked_phase2 by
 run_time_phase1.

	
 Real-Time Speed Phase1 the speed
 since the last checkpoint if the LFSCK is running
 scanning-phase1.

	
 Real-Time Speed Phase2 the speed
 since the last checkpoint if the LFSCK is running
 scanning-phase2.

Introduced in Lustre 2.635.4.3.3. LFSCK status of layout via
 procfs

35.4.3.3.1. Description

The
 layout component is responsible for checking and
 repairing MDT-OST inconsistency. The
 procfs interface for this component is in the MDD
 layer, named
 lfsck_layout, and in the OBD layer, named
 lfsck_layout. To show the status of this component
 lctl get_param should be used as described in the
 usage below.
The LFSCK layout status output refers to phase 1 and phase 2.
 Phase 1 is when the LFSCK main engine, which runs on each MDT/OST,
 linearly scans its local device, guaranteeing that all local objects
 are checked. During phase 1 of layout LFSCK, the OST-objects which are
 not referenced by any MDT-object are recorded in a bitmap. During
 phase 2 of the layout check, the OST-objects in the bitmap will be
 re-scanned to check whether they are really orphan objects.

35.4.3.3.2. Usage

lctl get_param -n mdd.
FSNAME-
MDT_target.lfsck_layout
lctl get_param -n obdfilter.
FSNAME-
OST_target.lfsck_layout

35.4.3.3.3. Output

	

 Information

 	

 Detail

	
 General Information

 	
 	Name:
 lfsck_layout

	LFSCK namespace magic.

	LFSCK namespace version..

	Status: one of the status -
 init,
 scanning-phase1,
 scanning-phase2,
 completed,
 failed,
 stopped,
 paused,
 crashed,
 partial,
 co-failed,
 co-stopped, or
 co-paused.

	Flags: including -
 scanned-once(the first cycle
 scanning has been completed),
 inconsistent(one or more MDT-OST
 inconsistencies have been discovered),
 incomplete(some MDT or OST did not
 participate in the LFSCK or failed to finish the LFSCK)
 or
 crashed_lastid(the lastid files on
 the OST crashed and needs to be rebuilt).

	Parameters: including
 dryrun,
 all_targets and
 failout.

	Time Since Last Completed.

	Time Since Latest Start.

	Time Since Last Checkpoint.

	Latest Start Position: the position the checking
 began most recently.

	Last Checkpoint Position.

	First Failure Position: the position for the
 first object to be repaired.

	Current Position.

	
 Statistics

 	
 	
 Success Count: the total number of
 completed LFSCK runs on the target.

	
 Repaired Dangling: total number of
 MDT-objects with dangling reference have been repaired
 in the scanning-phase1.

	
 Repaired Unmatched Pairs total number
 of unmatched MDT and OST-object pairs have been
 repaired in the scanning-phase1

	
 Repaired Multiple Referenced total
 number of OST-objects with multiple reference have been
 repaired in the scanning-phase1.

	
 Repaired Orphan total number of
 orphan OST-objects have been repaired in the
 scanning-phase2.

	
 Repaired Inconsistent Owner total
 number.of OST-objects with incorrect owner information
 have been repaired in the scanning-phase1.

	
 Repaired Others total number of.other
 inconsistency repaired in the scanning phases.

	
 Skipped Number of skipped
 objects.

	
 Failed Phase1 total number of objects
 that failed to be repaired during
 scanning-phase1.

	
 Failed Phase2 total number of objects
 that failed to be repaired during
 scanning-phase2.

	
 Checked Phase1 total number of
 objects scanned during
 scanning-phase1.

	
 Checked Phase2 total number of
 objects scanned during
 scanning-phase2.

	
 Run Time Phase1 the duration of the
 LFSCK run during
 scanning-phase1. Excluding the time
 spent paused between checkpoints.

	
 Run Time Phase2 the duration of the
 LFSCK run during
 scanning-phase2. Excluding the time
 spent paused between checkpoints.

	
 Average Speed Phase1 calculated by
 dividing
 checked_phase1 by
 run_time_phase1.

	
 Average Speed Phase2 calculated by
 dividing
 checked_phase2 by
 run_time_phase1.

	
 Real-Time Speed Phase1 the speed
 since the last checkpoint if the LFSCK is running
 scanning-phase1.

	
 Real-Time Speed Phase2 the speed
 since the last checkpoint if the LFSCK is running
 scanning-phase2.

35.4.4. LFSCK adjustment interface

Introduced in Lustre 2.635.4.4.1. Rate control

35.4.4.1.1. Description

The LFSCK upper speed limit can be changed using
 lctl set_param as shown in the usage below.

35.4.4.1.2. Usage

lctl set_param mdd.${FSNAME}-${MDT_target}.lfsck_speed_limit=
N
lctl set_param obdfilter.${FSNAME}-${OST_target}.lfsck_speed_limit=
N

35.4.4.1.3. Values

	
 0

 	
 No speed limit (run at maximum speed.)

	
 positive integer

 	
 Maximum number of objects to scan per second.

35.4.4.2. Auto scrub

35.4.4.2.1. Description

The
 auto_scrub parameter controls whether OI scrub will
 be triggered when an inconsistency is detected during OI lookup. It
 can be set as described in the usage and values sections
 below.
There is also a
 noscrub mount option (see
 Section 43.15, “
mount.lustre”) which can be used to
 disable automatic OI scrub upon detection of a file-level backup at
 mount time. If the
 noscrub mount option is specified,
 auto_scrub will also be disabled, so OI scrub will
 not be triggered when an OI inconsistency is detected. Auto scrub can
 be renabled after the mount using the command shown in the usage.
 Manually starting LFSCK after mounting provides finer control over
 the starting conditions.

35.4.4.2.2. Usage

lctl set_param osd_ldiskfs.${FSNAME}-${MDT_target}.auto_scrub=N
where
 Nis an integer as described below.
Introduced in Lustre 2.5Note
Lustre software 2.5 and later supports
 -P option that makes the
 set_param permanent.

35.4.4.2.3. Values

	
 0

 	
 Do not start OI Scrub automatically.

	
 positive integer

 	
 Automatically start OI Scrub if inconsistency is
 detected during OI lookup.

Chapter 36. Debugging a Lustre File System

This chapter describes tips and information to debug a Lustre file system, and includes the
 following sections:
	Section 36.1, “
Diagnostic and Debugging Tools”

	Section 36.2, “Lustre Debugging Procedures”

	Section 36.3, “Lustre Debugging for Developers”

36.1.
Diagnostic and Debugging Tools

A variety of diagnostic and analysis tools are available to debug
 issues with the Lustre software. Some of these are provided in Linux
 distributions, while others have been developed and are made available
 by the Lustre project.
36.1.1. Lustre Debugging Tools

The following in-kernel debug mechanisms are incorporated into
 the Lustre software:
	Debug logs
 - A circular debug buffer to which Lustre internal debug messages
 are written (in contrast to error messages, which are printed to the
 syslog or console). Entries in the Lustre debug log are controlled
 by a mask set by lctl set_param debug=mask.
 The log size defaults to 5 MB per CPU but can be increased as a
 busy system will quickly overwrite 5 MB. When the buffer fills,
 the oldest log records are discarded.

	
 lctl get_param debug
 - This shows the current debug mask used to delimit
 the debugging information written out to the kernel debug logs.

	
 lctl debug_kernel file
 - Dump the Lustre kernel debug log to the specified
 file as ASCII text for further debugging and analysis.

	
 lctl set_param debug_mb=size
 - This sets the maximum size of the in-kernel Lustre
 debug buffer, in units of MiB.

	Debug daemon
 - The debug daemon controls the continuous logging of debug
 messages to a log file in userspace.

The following tools are also provided with the Lustre software:
	
 lctl
 - This tool is used with the debug_kernel option to
 manually dump the Lustre debugging log or post-process debugging
 logs that are dumped automatically. For more information about the
 lctl tool, see Section 36.2.2, “Using the lctl Tool to View Debug Messages” and Section 43.3, “
lctl”.

	Lustre subsystem asserts - A panic-style assertion (LBUG) in the kernel causes the
 Lustre file system to dump the debug log to the file
 /tmp/lustre-log.timestamp where it can
 be retrieved after a reboot. For more information, see Section 34.1.2, “Viewing Error Messages”.

	

 lfs
 - This utility provides access to the extended attributes (EAs) of a Lustre
 file (along with other information). For more information about lfs, see Section 39.1, “

 lfs
 ”.

36.1.2. External Debugging Tools

The tools described in this section are provided in the Linux kernel or are available at an external website. For information about using some of these tools for Lustre debugging, see Section 36.2, “Lustre Debugging Procedures” and Section 36.3, “Lustre Debugging for Developers”.
36.1.2.1. Tools for Administrators and Developers

Some general debugging tools provided as a part of the standard Linux distribution
 are:
	
 strace
 . This tool allows a system call to be traced.

	
 /var/log/messages
 . syslogd prints fatal or serious messages at this log.

	Crash dumps . On crash-dump enabled kernels,
 sysrq c produces a crash dump. The Lustre software enhances this crash dump with a log
 dump (the last 64 KB of the log) to the console.

	
 debugfs
 . Interactive file system debugger.

The following logging and data collection tools can be used to collect information for debugging Lustre kernel issues:
	
 kdump
 . A Linux kernel crash utility useful for debugging a system running Red Hat Enterprise Linux. For more information about kdump, see the Red Hat knowledge base article How do I configure kexec/kdump on Red Hat Enterprise Linux 5?. To download kdump, go to the Fedora Project Download site.

	
 netconsole
 . Enables kernel-level network logging over UDP. A system requires (SysRq) allows users to collect relevant data through netconsole.

	
 netdump
 . A crash dump utility from Red Hat that allows memory images to be dumped
 over a network to a central server for analysis. The netdump
 utility was replaced by kdump in Red Hat Enterprise Linux 5. For
 more information about netdump, see Red Hat, Inc.'s
 Network Console and Crash Dump Facility.

	wireshark . A network
	 packet inspection tool that allows debugging of information that was
	 sent between the various Lustre nodes. This tool is built on top of
	 tcpdump and can read packet dumps generated by
	 it. There are plug-ins available to dissassemble the LNet and
	 Lustre protocols. They are located within the Lustre git repository
	 under lustre/contrib/wireshark/. Installation
	 instruction are included in that directory. See also Wireshark Website for
	 more details.

36.1.2.2. Tools for Developers

The tools described in this section may be useful for debugging a Lustre file system
 in a development environment.
Of general interest is:
	
 leak_finder.pl
 . This program provided with the Lustre software is useful for finding
 memory leaks in the code.

A virtual machine is often used to create an isolated development and test environment. Some commonly-used virtual machines are:
	VirtualBox Open Source Edition . Provides enterprise-class virtualization capability for all major platforms and is available free at Get Sun VirtualBox.

	VMware Server . Virtualization platform available as free introductory software at Download VMware Server.

	Xen . A para-virtualized environment with virtualization capabilities similar to VMware Server and Virtual Box. However, Xen allows the use of modified kernels to provide near-native performance and the ability to emulate shared storage. For more information, go to xen.org.

A variety of debuggers and analysis tools are available including:
	
 kgdb
 . The Linux Kernel Source Level Debugger kgdb is used in conjunction with the GNU Debugger gdb for debugging the Linux kernel. For more information about using kgdb with gdb, see Chapter 6. Running Programs Under gdb in the Red Hat Linux 4 Debugging with GDB guide.

	
 crash
 . Used to analyze saved crash dump data when a system had panicked or locked up or appears unresponsive. For more information about using crash to analyze a crash dump, see:
	 Red Hat Magazine article: A quick overview of Linux kernel crash dump analysis

	Crash Usage: A Case Study from the white paper Red Hat Crash Utility by David Anderson

	 Kernel Trap forum entry: Linux: Kernel Crash Dumps

	 White paper: A Quick Overview of Linux Kernel Crash Dump Analysis

36.2. Lustre Debugging Procedures

The procedures below may be useful to administrators or developers debugging a Lustre files system.
36.2.1. Understanding the Lustre Debug Messaging Format

Lustre debug messages are categorized by originating subsystem, message type, and location in the source code. For a list of subsystems and message types, see Section 36.2.1.1, “Lustre Debug Messages”.
Note
For a current list of subsystems and debug message types, see
 libcfs/include/libcfs/libcfs_debug.h in the Lustre software
 tree

The elements of a Lustre debug message are described in Section 36.2.1.2, “Format of Lustre Debug Messages” Format of Lustre Debug Messages.
36.2.1.1. Lustre Debug Messages

Each Lustre debug message has the tag of the subsystem it originated in, the message
 type, and the location in the source code. The subsystems and debug types used are as
 follows:
	 Standard Subsystems:
 mdc, mds, osc, ost, obdclass, obdfilter, llite, ptlrpc, portals, lnd, ldlm, lov

	 Debug Types:

		
 Types

 	
 Description

	
 trace

 	
 Function entry/exit markers

	
 dlmtrace

 	
 Distributed locking-related information

	
 inode

 	

	
 super

 	

	
 malloc

 	
 Memory allocation or free information

	
 cache

 	
 Cache-related information

	
 info

 	
 Non-critical general information

	
 dentry

 	
 kernel namespace cache handling

	
 mmap

 	
 Memory-mapped IO interface

	
 page

 	
 Page cache and bulk data transfers

	
 info

 	
 Miscellaneous informational messages

	
 net

 	
 LNet network related debugging

	
 console

 	
 Significant system events, printed to console

	
 warning

 	
 Significant but non-fatal exceptions, printed
 to console

	
 error

 	
 Critical error messages, printed to console

	
 neterror

 	
 Significant LNet error messages

	
 emerg

 	
 Fatal system errors, printed to console

	
 config

 	
 Configuration and setup, enabled by default

	
 ha

 	
 Failover and recovery-related information,
 enabled by default

	
 hsm

 	
 Hierarchical space management/tiering

	
 ioctl

 	
 IOCTL-related information, enabled by default

	
 layout

 	
 File layout handling (PFL, FLR, DoM)

	
 lfsck

 	
 Filesystem consistency checking, enabled by
 default

	
 other

 	
 Miscellaneious other debug messages

	
 quota

 	
 Space accounting and management

	
 reada

 	
 Client readahead management

	
 rpctrace

 	
 Remote request/reply tracing and debugging

	
 sec

 	
 Security, Kerberos, Shared Secret Key handling

	
 snapshot

 	
 Filesystem snapshot management

	
 vfstrace

 	
 Kernel VFS interface operations

36.2.1.2. Format of Lustre Debug Messages

The Lustre software uses the CDEBUG() and
 CERROR() macros to print the debug or error messages. To print the
 message, the CDEBUG() macro uses the function
 libcfs_debug_msg() (libcfs/libcfs/tracefile.c).
 The message format is described below, along with an example.
	
 Description

 	
 Parameter

	
 subsystem

 	
 800000

	
 debug mask

 	
 000010

	
 smp_processor_id

 	
 0

	
 seconds.microseconds

 	
 1081880847.677302

	
 stack size

 	
 1204

	
 pid

 	
 2973

	
 host pid (UML only) or zero

 	
 31070

	
 (file:line #:function_name())

 	
 (obd_mount.c:2089:lustre_fill_super())

	
 debug message

 	
 kmalloced '*obj': 24 at a375571c (tot 17447717)

36.2.1.3. Lustre Debug Messages Buffer

Lustre debug messages are maintained in a buffer, with the maximum buffer size specified (in MBs) by the debug_mb parameter (lctl get_param debug_mb). The buffer is circular, so debug messages are kept until the allocated buffer limit is reached, and then the first messages are overwritten.

36.2.2. Using the lctl Tool to View Debug Messages

The lctl tool allows debug messages to be filtered based on subsystems and message types to extract information useful for troubleshooting from a kernel debug log. For a command reference, see Section 43.3, “
lctl”.
You can use lctl to:
	Obtain a list of all the types and subsystems:
lctl > debug_list subsystems|types

	Filter the debug log:
lctl > filter subsystem_name|debug_type

Note
When lctl filters, it removes unwanted lines from the displayed output. This does not affect the contents of the debug log in the kernel's memory. As a result, you can print the log many times with different filtering levels without worrying about losing data.

	Show debug messages belonging to certain subsystem or type:
lctl > show subsystem_name|debug_type
debug_kernel pulls the data from the kernel logs, filters it appropriately, and displays or saves it as per the specified options
lctl > debug_kernel [output filename]
If the debugging is being done on User Mode Linux (UML), it might be useful to save the logs on the host machine so that they can be used at a later time.

	Filter a log on disk, if you already have a debug log saved to disk (likely from a crash):
lctl > debug_file input_file [output_file]
During the debug session, you can add markers or breaks to the log for any reason:
lctl > mark [marker text]
The marker text defaults to the current date and time in the debug log (similar to the example shown below):
DEBUG MARKER: Tue Mar 5 16:06:44 EST 2002

	Completely flush the kernel debug buffer:
lctl > clear

Note
Debug messages displayed with lctl are also subject to the kernel debug masks; the filters are additive.

36.2.2.1. Sample lctl Run

Below is a sample run using the lctl command.
bash-2.04# ./lctl
lctl > debug_kernel /tmp/lustre_logs/log_all
Debug log: 324 lines, 324 kept, 0 dropped.
lctl > filter trace
Disabling output of type "trace"
lctl > debug_kernel /tmp/lustre_logs/log_notrace
Debug log: 324 lines, 282 kept, 42 dropped.
lctl > show trace
Enabling output of type "trace"
lctl > filter portals
Disabling output from subsystem "portals"
lctl > debug_kernel /tmp/lustre_logs/log_noportals
Debug log: 324 lines, 258 kept, 66 dropped.

36.2.3. Dumping the Buffer to a File (debug_daemon)

The lctl debug_daemon command is used to continuously dump the debug_kernel buffer to a user-specified file. This functionality uses a kernel thread to continuously dump the messages from the kernel debug log, so that much larger debug logs can be saved over a longer time than would fit in the kernel ringbuffer.
The debug_daemon is highly dependent on file system write speed. File system write operations may not be fast enough to flush out all of the debug_buffer if the Lustre file system is under heavy system load and continues to log debug messages to the debug_buffer. The debug_daemon will write the message DEBUG MARKER: Trace buffer full into the debug_buffer to indicate the debug_buffer contents are overlapping before the debug_daemon flushes data to a file.
Users can use the lctl debug_daemon command to start or stop the Lustre daemon from dumping the debug_buffer to a file.
36.2.3.1. lctl debug_daemon Commands

To initiate the debug_daemon to start dumping the debug_buffer into a file, run as the root user:
lctl debug_daemon start filename [megabytes]
The debug log will be written to the specified filename from the kernel. The file will be limited to the optionally specified number of megabytes.
The daemon wraps around and dumps data to the beginning of the file when the output file size is over the limit of the user-specified file size. To decode the dumped file to ASCII and sort the log entries by time, run:
lctl debug_file filename > newfile
The output is internally sorted by the lctl command.
To stop the debug_daemon operation and flush the file output, run:
lctl debug_daemon stop
Otherwise, debug_daemon is shut down as part of the Lustre file system shutdown process. Users can restart debug_daemon by using start command after each stop command issued.
This is an example using debug_daemon with the interactive mode of lctl to dump debug logs to a 40 MB file.
lctl
lctl > debug_daemon start /var/log/lustre.40.bin 40
run filesystem operations to debug
lctl > debug_daemon stop
lctl > debug_file /var/log/lustre.bin /var/log/lustre.log
To start another daemon with an unlimited file size, run:
lctl > debug_daemon start /var/log/lustre.bin
The text message *** End of debug_daemon trace log *** appears at the end of each output file.

36.2.4. Controlling Information Written to the Kernel Debug Log

The lctl set_param subsystem_debug=subsystem_mask and lctl set_param debug=debug_mask are used to determine which information is written to the debug log. The subsystem_debug mask determines the information written to the log based on the functional area of the code (such as lnet, osc, or ldlm). The debug mask controls information based on the message type (such as info, error, trace, or malloc). For a complete list of possible debug masks use the lctl debug_list types command.
To turn off Lustre debugging completely:
lctl set_param debug=0
To turn on full Lustre debugging:
lctl set_param debug=-1
To list all possible debug masks:
lctl debug_list types
To log only messages related to network communications:
lctl set_param debug=net
To turn on logging of messages related to network communications and existing debug flags:
lctl set_param debug=+net
To turn off network logging with changing existing flags:
lctl set_param debug=-net
The various options available to print to kernel debug logs are listed in libcfs/include/libcfs/libcfs.h

36.2.5. Troubleshooting with strace

The strace utility provided with the Linux distribution enables system calls to be traced by intercepting all the system calls made by a process and recording the system call name, arguments, and return values.
To invoke strace on a program, enter:
$ strace program [arguments]
Sometimes, a system call may fork child processes. In this situation, use the -f option of strace to trace the child processes:
$ strace -f program [arguments]
To redirect the strace output to a file, enter:
$ strace -o filename program [arguments]
Use the -ff option, along with -o, to save the trace output in filename.pid, where pid is the process ID of the process being traced. Use the -ttt option to timestamp all lines in the strace output, so they can be correlated to operations in the lustre kernel debug log.

36.2.6. Looking at Disk Content

In a Lustre file system, the inodes on the metadata server contain extended attributes
 (EAs) that store information about file striping. EAs contain a list of all object IDs and
 their locations (that is, the OST that stores them). The lfs tool can be
 used to obtain this information for a given file using the getstripe
 subcommand. Use a corresponding lfs setstripe command to specify striping
 attributes for a new file or directory.
The lfs getstripe command takes a Lustre filename as input and lists
 all the objects that form a part of this file. To obtain this information for the file
 /mnt/testfs/frog in a Lustre file system, run:
$ lfs getstripe /mnt/testfs/frog
lmm_stripe_count: 2
lmm_stripe_size: 1048576
lmm_pattern: 1
lmm_layout_gen: 0
lmm_stripe_offset: 2
 obdidx objid objid group
 2 818855 0xc7ea7 0
 0 873123 0xd52a3 0

The debugfs tool is provided in the
 e2fsprogs package. It can be used for interactive
 debugging of an ldiskfs file system. The
 debugfs tool can either be used to check status or
 modify information in the file system. In a Lustre file system, all
 objects that belong to a file are stored in an underlying
 ldiskfs file system on the OSTs. The file system
 uses the object IDs as the file names. Once the object IDs are known,
 use the debugfs tool to obtain the attributes of
 all objects from different OSTs.
A sample run for the /mnt/testfs/frog file used
 in the above example is shown here:
$ debugfs -c -R "stat O/0/d$((818855 % 32))/818855" /dev/vgmyth/lvmythost2

debugfs 1.41.90.wc3 (28-May-2011)
/dev/vgmyth/lvmythost2: catastrophic mode - not reading inode or group bitmaps
Inode: 227649 Type: regular Mode: 0666 Flags: 0x80000
Generation: 1375019198 Version: 0x0000002f:0000728f
User: 1000 Group: 1000 Size: 2800
File ACL: 0 Directory ACL: 0
Links: 1 Blockcount: 8
Fragment: Address: 0 Number: 0 Size: 0
 ctime: 0x4e177fe5:00000000 -- Fri Jul 8 16:08:37 2011
 atime: 0x4d2e2397:00000000 -- Wed Jan 12 14:56:39 2011
 mtime: 0x4e177fe5:00000000 -- Fri Jul 8 16:08:37 2011
crtime: 0x4c3b5820:a364117c -- Mon Jul 12 12:00:00 2010
Size of extra inode fields: 28
Extended attributes stored in inode body:
 fid = "08 80 24 00 00 00 00 00 28 8a e7 fc 00 00 00 00 a7 7e 0c 00 00 00 00 00
 00 00 00 00 00 00 00 00 " (32)
 fid: objid=818855 seq=0 parent=[0x248008:0xfce78a28:0x0] stripe=0
EXTENTS:
(0):63331288

36.2.7. Finding the Lustre UUID of an OST

To determine the Lustre UUID of an OST disk (for example, if you mix up the cables on your OST devices or the SCSI bus numbering suddenly changes and the SCSI devices get new names), it is possible to extract this from the last_rcvd file using debugfs:
debugfs -c -R "dump last_rcvd /tmp/last_rcvd" /dev/sdc
strings /tmp/last_rcvd | head -1
myth-OST0004_UUID

It is also possible (and easier) to extract this from the file system label using the
 dumpe2fs command:
dumpe2fs -h /dev/sdc | grep volume
dumpe2fs 1.41.90.wc3 (28-May-2011)
Filesystem volume name: myth-OST0004

The debugfs and dumpe2fs commands are well documented in the debugfs(8) and dumpe2fs(8) manual pages.

36.2.8. Printing Debug Messages to the Console

To dump debug messages to the console (/var/log/messages), set the corresponding debug mask in the printk flag:
lctl set_param printk=-1
This slows down the system dramatically. It is also possible to selectively enable or disable this capability for particular flags using:lctl set_param printk=+vfstrace and lctl set_param printk=-vfstrace .
It is possible to disable warning, error, and console messages, though it is strongly recommended to have something like lctl debug_daemon running to capture this data to a local file system for failure detection purposes.

36.2.9. Tracing Lock Traffic

The Lustre software provides a specific debug type category for tracing lock traffic.
 Use:
lctl> filter all_types
lctl> show dlmtrace
lctl> debug_kernel [filename]

36.2.10. Controlling Console Message Rate Limiting

Some console messages which are printed by Lustre are rate limited. When such messages are printed, they may be followed by a message saying "Skipped N previous similar message(s)," where N is the number of messages skipped. This rate limiting can be completely disabled by a libcfs module parameter called libcfs_console_ratelimit. To disable console message rate limiting, add this line to /etc/modprobe.d/lustre.conf and then reload Lustre modules.
options libcfs libcfs_console_ratelimit=0
It is also possible to set the minimum and maximum delays between rate-limited console messages using the module parameters libcfs_console_max_delay and libcfs_console_min_delay. Set these in /etc/modprobe.d/lustre.conf and then reload Lustre modules. Additional information on libcfs module parameters is available via modinfo:
modinfo libcfs

36.3. Lustre Debugging for Developers

The procedures in this section may be useful to developers debugging Lustre source
 code.
36.3.1. Adding Debugging to the Lustre Source Code

The debugging infrastructure provides a number of macros that can be used in Lustre source code to aid in debugging or reporting serious errors.
To use these macros, you will need to set the DEBUG_SUBSYSTEM variable at the top of the file as shown below:
#define DEBUG_SUBSYSTEM S_PORTALS
A list of available macros with descriptions is provided in the table below.
	
 Macro

 	
 Description

	

 LBUG()

 	
 A panic-style assertion in the kernel which causes the Lustre file system to
 dump its circular log to the /tmp/lustre-log file. This file
 can be retrieved after a reboot. LBUG() freezes the thread to
 allow capture of the panic stack. A system reboot is needed to clear the
 thread.

	

 LASSERT()

 	
 Validates a given expression as true, otherwise calls LBUG(). The failed expression is printed on the console, although the values that make up the expression are not printed.

	

 LASSERTF()

 	
 Similar to LASSERT() but allows a free-format message to be printed, like printf/printk.

	

 CDEBUG()

 	
 The basic, most commonly used debug macro that takes just one more argument than standard printf() - the debug type. This message adds to the debug log with the debug mask set accordingly. Later, when a user retrieves the log for troubleshooting, they can filter based on this type.

 CDEBUG(D_INFO, "debug message: rc=%d\n", number);

	

 CDEBUG_LIMIT()

 	
 Behaves similarly to CDEBUG(), but rate limits this message when printing to the console (for D_WARN, D_ERROR, and D_CONSOLE message types. This is useful for messages that use a variable debug mask:

 CDEBUG(mask, "maybe bad: rc=%d\n", rc);

	

 CERROR()

 	
 Internally using CDEBUG_LIMIT(D_ERROR, ...), which unconditionally prints the message in the debug log and to the console. This is appropriate for serious errors or fatal conditions. Messages printed to the console are prefixed with LustreError:, and are rate-limited, to avoid flooding the console with duplicates.

 CERROR("Something bad happened: rc=%d\n", rc);

	

 CWARN()

 	
 Behaves similarly to CERROR(), but prefixes the messages with Lustre:. This is appropriate for important, but not fatal conditions. Messages printed to the console are rate-limited.

	

 CNETERR()

 	
 Behaves similarly to CERROR(), but prints error messages for LNet if D_NETERR is set in the debug mask. This is appropriate for serious networking errors. Messages printed to the console are rate-limited.

	

 DEBUG_REQ()

 	
 Prints information about the given ptlrpc_request structure.

 DEBUG_REQ(D_RPCTRACE, req, ""Handled RPC: rc=%d\n", rc);

	

 ENTRY

 	
 Add messages to the entry of a function to aid in call tracing (takes no arguments). When using these macros, cover all exit conditions with a single EXIT, GOTO(), or RETURN() macro to avoid confusion when the debug log reports that a function was entered, but never exited.

	

 EXIT

 	
 Mark the exit of a function, to match ENTRY (takes no arguments).

	

 GOTO()

 	
 Mark when code jumps via goto to the end of a function, to match ENTRY, and prints out the goto label and function return code in signed and unsigned decimal, and hexadecimal format.

	

 RETURN()

 	
 Mark the exit of a function, to match ENTRY, and prints out the function return code in signed and unsigned decimal, and hexadecimal format.

	

 LDLM_DEBUG()

 LDLM_DEBUG_NOLOCK()

 	
 Used when tracing LDLM locking operations. These macros build a thin trace that shows the locking requests on a node, and can also be linked across the client and server node using the printed lock handles.

	

 OBD_FAIL_CHECK()

 	
 Allows insertion of failure points into the Lustre source code. This is useful
 to generate regression tests that can hit a very specific sequence of events. This
 works in conjunction with "lctl set_param
 fail_loc=fail_loc" to set a specific
 failure point for which a given OBD_FAIL_CHECK() will
 test.

	

 OBD_FAIL_TIMEOUT()

 	
 Similar to OBD_FAIL_CHECK(). Useful to simulate hung, blocked or busy processes or network devices. If the given fail_loc is hit, OBD_FAIL_TIMEOUT() waits for the specified number of seconds.

	

 OBD_RACE()

 	
 Similar to OBD_FAIL_CHECK(). Useful to have multiple processes execute the same code concurrently to provoke locking races. The first process to hit OBD_RACE() sleeps until a second process hits OBD_RACE(), then both processes continue.

	

 OBD_FAIL_ONCE

 	
 A flag set on a fail_loc breakpoint to cause the OBD_FAIL_CHECK() condition to be hit only one time. Otherwise, a fail_loc is permanent until it is cleared with "lctl set_param fail_loc=0".

	

 OBD_FAIL_RAND

 	
 A flag set on a fail_loc breakpoint to cause OBD_FAIL_CHECK() to fail randomly; on average every (1 / fail_val) times.

	

 OBD_FAIL_SKIP

 	
 A flag set on a fail_loc breakpoint to cause OBD_FAIL_CHECK() to succeed fail_val times, and then fail permanently or once with OBD_FAIL_ONCE.

	

 OBD_FAIL_SOME

 	
 A flag set on fail_loc breakpoint to cause OBD_FAIL_CHECK to fail fail_val times, and then succeed.

36.3.2. Accessing the ptlrpc Request History

Each service maintains a request history, which can be useful for first occurrence troubleshooting.
ptlrpc is an RPC protocol layered on LNet that deals with stateful servers and has semantics and built-in support for recovery.
The ptlrpc request history works as follows:
	request_in_callback() adds the new request to the service's request history.

	When a request buffer becomes idle, it is added to the service's request buffer history list.

	Buffers are culled from the service request buffer history if it has grown above req_buffer_history_max and its reqs are removed from the service request history.

Request history is accessed and controlled using the following parameters for each service:
	req_buffer_history_len
Number of request buffers currently in the history

	req_buffer_history_max
Maximum number of request buffers to keep

	req_history
The request history

Requests in the history include "live" requests that are currently being handled. Each line in req_history looks like:
sequence:target_NID:client_NID:cliet_xid:request_length:rpc_phase service_specific_data
	
 Parameter

 	
 Description

	

 seq

 	
 Request sequence number

	

 target NID

 	
 Destination NID of the incoming request

	

 client ID

 	
 Client PID and NID

	

 xid

 	
 rq_xid

	

 length

 	
 Size of the request message

	

 phase

 	
 	New (waiting to be handled or could not be unpacked)

	Interpret (unpacked or being handled)

	Complete (handled)

	

 svc specific

 	
 Service-specific request printout. Currently, the only service that does this is the OST (which prints the opcode if the message has been unpacked successfully

36.3.3. Finding Memory Leaks Using leak_finder.pl

Memory leaks can occur in code when memory has been allocated and then not freed once it is no longer required. The leak_finder.pl program provides a way to find memory leaks.
Before running this program, you must turn on debugging to collect all malloc and free entries. Run:
lctl set_param debug=+malloc
Then complete the following steps:
	Dump the log into a user-specified log file using lctl (see Section 36.2.2, “Using the lctl Tool to View Debug Messages”).

	Run the leak finder on the newly-created log dump:
perl leak_finder.pl ascii-logname

The output is:
malloced 8bytes at a3116744 (called pathcopy)
(lprocfs_status.c:lprocfs_add_vars:80)
freed 8bytes at a3116744 (called pathcopy)
(lprocfs_status.c:lprocfs_add_vars:80)

The tool displays the following output to show the leaks found:
Leak:32bytes allocated at a23a8fc(service.c:ptlrpc_init_svc:144,debug file line 241)

Chapter 37. Lustre File System Recovery

This chapter describes how recovery is implemented in a Lustre file system and includes the
 following sections:
	Section 37.1, “

 Recovery Overview”

	Section 37.2, “Metadata Replay”

	Section 37.3, “Reply Reconstruction”

	Section 37.4, “Version-based Recovery”

	Section 37.5, “Commit on Share”

	Section 37.6, “Imperative Recovery”

37.1.

 Recovery Overview

The recovery feature provided in the Lustre software is responsible for dealing with node
 or network failure and returning the cluster to a consistent, performant state. Because the
 Lustre software allows servers to perform asynchronous update operations to the on-disk file
 system (i.e., the server can reply without waiting for the update to synchronously commit to
 disk), the clients may have state in memory that is newer than what the server can recover
 from disk after a crash.
A handful of different types of failures can cause recovery to occur:
	 Client (compute node) failure

	 MDS failure (and failover)

	 OST failure (and failover)

	 Transient network partition

For Lustre software release 2.1.x and all earlier releases, all Lustre file system failure
 and recovery operations are based on the concept of connection failure; all imports or exports
 associated with a given connection are considered to fail if any of them fail. Lustre software
 release 2.2.x adds the Section 37.6, “Imperative Recovery” feature which enables the MGS to
 actively inform clients when a target restarts after a failure, failover or other
 interruption.
For information on Lustre file system recovery, see Section 37.2, “Metadata Replay”. For
 information on recovering from a corrupt file system, see Section 37.5, “Commit on Share”. For
 information on resolving orphaned objects, a common issue after recovery, see Section 35.2.1, “
 Working with Orphaned Objects”. For information on imperative recovery see Section 37.6, “Imperative Recovery”

37.1.1. Client Failure

Recovery from client failure in a Lustre file system is based on lock revocation and
 other resources, so surviving clients can continue their work uninterrupted. If a client
 fails to timely respond to a blocking lock callback from the Distributed Lock Manager (DLM)
 or fails to communicate with the server in a long period of time (i.e., no pings), the
 client is forcibly removed from the cluster (evicted). This enables other clients to acquire
 locks blocked by the dead client's locks, and also frees resources (file handles,
 export data) associated with that client. Note that this scenario can be caused by a network
 partition, as well as an actual client node system failure. Section 37.1.5, “Network Partition” describes this case in more detail.

37.1.2. Client Eviction

If a client is not behaving properly from the server's point of view, it will be evicted. This ensures that the whole file system can continue to function in the presence of failed or misbehaving clients. An evicted client must invalidate all locks, which in turn, results in all cached inodes becoming invalidated and all cached data being flushed.
Reasons why a client might be evicted:
	Failure to respond to a server request in a timely manner
	Blocking lock callback (i.e., client holds lock that another client/server wants)

	Lock completion callback (i.e., client is granted lock previously held by another client)

	Lock glimpse callback (i.e., client is asked for size of object by another client)

	Server shutdown notification (with simplified interoperability)

	Failure to ping the server in a timely manner, unless the server is receiving no RPC traffic at all (which may indicate a network partition).

37.1.3. MDS Failure (Failover)

Highly-available (HA) Lustre file system operation requires that the metadata server
 have a peer configured for failover, including the use of a shared storage device for the
 MDT backing file system. The actual mechanism for detecting peer failure, power off
 (STONITH) of the failed peer (to prevent it from continuing to modify the shared disk), and
 takeover of the Lustre MDS service on the backup node depends on external HA software such
 as Heartbeat. It is also possible to have MDS recovery with a single MDS node. In this case,
 recovery will take as long as is needed for the single MDS to be restarted.
When Section 37.6, “Imperative Recovery” is enabled, clients are notified of an MDS restart (either the backup or a restored primary). Clients always may detect an MDS failure either by timeouts of in-flight requests or idle-time ping messages. In either case the clients then connect to the new backup MDS and use the Metadata Replay protocol. Metadata Replay is responsible for ensuring that the backup MDS re-acquires state resulting from transactions whose effects were made visible to clients, but which were not committed to the disk.
The reconnection to a new (or restarted) MDS is managed by the file system configuration loaded by the client when the file system is first mounted. If a failover MDS has been configured (using the --failnode= option to mkfs.lustre or tunefs.lustre), the client tries to reconnect to both the primary and backup MDS until one of them responds that the failed MDT is again available. At that point, the client begins recovery. For more information, see Section 37.2, “Metadata Replay”.
Transaction numbers are used to ensure that operations are
 replayed in the order they were originally performed, so that they
 are guaranteed to succeed and present the same file system state as
 before the failure. In addition, clients inform the new server of their
 existing lock state (including locks that have not yet been granted).
 All metadata and lock replay must complete before new, non-recovery
 operations are permitted. In addition, only clients that were connected
 at the time of MDS failure are permitted to reconnect during the recovery
 window, to avoid the introduction of state changes that might conflict
 with what is being replayed by previously-connected clients.
Introduced in Lustre 2.4Lustre software release 2.4 introduces multiple
 metadata targets. If multiple MDTs are in use, active-active failover
 is possible (e.g. two MDS nodes, each actively serving one or more
 different MDTs for the same filesystem). See
 Section 3.2.2, “
 MDT Failover Configuration (Active/Active)” for more information.

37.1.4. OST Failure (Failover)

When an OST fails or has communication problems with the client, the default action is that the corresponding OSC enters recovery, and I/O requests going to that OST are blocked waiting for OST recovery or failover. It is possible to administratively mark the OSC as inactive on the client, in which case file operations that involve the failed OST will return an IO error (-EIO). Otherwise, the application waits until the OST has recovered or the client process is interrupted (e.g. ,with CTRL-C).
The MDS (via the LOV) detects that an OST is unavailable and skips it when assigning objects to new files. When the OST is restarted or re-establishes communication with the MDS, the MDS and OST automatically perform orphan recovery to destroy any objects that belong to files that were deleted while the OST was unavailable. For more information, see Chapter 35, Troubleshooting
 Recovery (Working with Orphaned Objects).
While the OSC to OST operation recovery protocol is the same as that between the MDC and
 MDT using the Metadata Replay protocol, typically the OST commits bulk write operations to
 disk synchronously and each reply indicates that the request is already committed and the
 data does not need to be saved for recovery. In some cases, the OST replies to the client
 before the operation is committed to disk (e.g. truncate, destroy, setattr, and I/O
 operations in newer releases of the Lustre software), and normal replay and resend handling
 is done, including resending of the bulk writes. In this case, the client keeps a copy of
 the data available in memory until the server indicates that the write has committed to
 disk.
To force an OST recovery, unmount the OST and then mount it again. If the OST was connected to clients before it failed, then a recovery process starts after the remount, enabling clients to reconnect to the OST and replay transactions in their queue. When the OST is in recovery mode, all new client connections are refused until the recovery finishes. The recovery is complete when either all previously-connected clients reconnect and their transactions are replayed or a client connection attempt times out. If a connection attempt times out, then all clients waiting to reconnect (and their transactions) are lost.
Note
If you know an OST will not recover a previously-connected client (if, for example, the client has crashed), you can manually abort the recovery using this command:
oss# lctl --device lustre_device_number abort_recovery
To determine an OST's device number and device name, run the lctl dl command. Sample lctl dl command output is shown below:
7 UP obdfilter ddn_data-OST0009 ddn_data-OST0009_UUID 1159
In this example, 7 is the OST device number. The device name is ddn_data-OST0009. In most instances, the device name can be used in place of the device number.

37.1.5. Network Partition

Network failures may be transient. To avoid invoking recovery, the client tries, initially, to re-send any timed out request to the server. If the resend also fails, the client tries to re-establish a connection to the server. Clients can detect harmless partition upon reconnect if the server has not had any reason to evict the client.
If a request was processed by the server, but the reply was dropped (i.e., did not arrive back at the client), the server must reconstruct the reply when the client resends the request, rather than performing the same request twice.

37.1.6. Failed Recovery

In the case of failed recovery, a client is evicted by the server and must reconnect after having flushed its saved state related to that server, as described in Section 37.1.2, “Client Eviction”, above. Failed recovery might occur for a number of reasons, including:
	 Failure of recovery
	 Recovery fails if the operations of one client directly depend on the operations of another client that failed to participate in recovery. Otherwise, Version Based Recovery (VBR) allows recovery to proceed for all of the connected clients, and only missing clients are evicted.

	 Manual abort of recovery

	 Manual eviction by the administrator

37.2. Metadata Replay

Highly available Lustre file system operation requires that the MDS have a peer configured
 for failover, including the use of a shared storage device for the MDS backing file system.
 When a client detects an MDS failure, it connects to the new MDS and uses the metadata replay
 protocol to replay its requests.
Metadata replay ensures that the failover MDS re-accumulates state resulting from transactions whose effects were made visible to clients, but which were not committed to the disk.
37.2.1. XID Numbers

Each request sent by the client contains an XID number, which is a client-unique, monotonically increasing 64-bit integer. The initial value of the XID is chosen so that it is highly unlikely that the same client node reconnecting to the same server after a reboot would have the same XID sequence. The XID is used by the client to order all of the requests that it sends, until such a time that the request is assigned a transaction number. The XID is also used in Reply Reconstruction to uniquely identify per-client requests at the server.

37.2.2. Transaction Numbers

Each client request processed by the server that involves any state change (metadata update, file open, write, etc., depending on server type) is assigned a transaction number by the server that is a target-unique, monotonically increasing, server-wide 64-bit integer. The transaction number for each file system-modifying request is sent back to the client along with the reply to that client request. The transaction numbers allow the client and server to unambiguously order every modification to the file system in case recovery is needed.
Each reply sent to a client (regardless of request type) also contains the last
 committed transaction number that indicates the highest transaction number committed to the
 file system. The ldiskfs and ZFS backing file systems that the Lustre software
 uses enforces the requirement that any earlier disk operation will always be committed to
 disk before a later disk operation, so the last committed transaction number also reports
 that any requests with a lower transaction number have been committed to disk.

37.2.3. Replay and Resend

Lustre file system recovery can be separated into two distinct types of operations:
 replay and resend.
Replay operations are those for which the client received a reply from the server that the operation had been successfully completed. These operations need to be redone in exactly the same manner after a server restart as had been reported before the server failed. Replay can only happen if the server failed; otherwise it will not have lost any state in memory.
Resend operations are those for which the client never received a reply, so their final state is unknown to the client. The client sends unanswered requests to the server again in XID order, and again awaits a reply for each one. In some cases, resent requests have been handled and committed to disk by the server (possibly also having dependent operations committed), in which case, the server performs reply reconstruction for the lost reply. In other cases, the server did not receive the lost request at all and processing proceeds as with any normal request. These are what happen in the case of a network interruption. It is also possible that the server received the request, but was unable to reply or commit it to disk before failure.

37.2.4. Client Replay List

All file system-modifying requests have the potential to be required for server state recovery (replay) in case of a server failure. Replies that have an assigned transaction number that is higher than the last committed transaction number received in any reply from each server are preserved for later replay in a per-server replay list. As each reply is received from the server, it is checked to see if it has a higher last committed transaction number than the previous highest last committed number. Most requests that now have a lower transaction number can safely be removed from the replay list. One exception to this rule is for open requests, which need to be saved for replay until the file is closed so that the MDS can properly reference count open-unlinked files.

37.2.5. Server Recovery

A server enters recovery if it was not shut down cleanly. If, upon startup, if any client entries are in the last_rcvd file for any previously connected clients, the server enters recovery mode and waits for these previously-connected clients to reconnect and begin replaying or resending their requests. This allows the server to recreate state that was exposed to clients (a request that completed successfully) but was not committed to disk before failure.
In the absence of any client connection attempts, the server waits indefinitely for the clients to reconnect. This is intended to handle the case where the server has a network problem and clients are unable to reconnect and/or if the server needs to be restarted repeatedly to resolve some problem with hardware or software. Once the server detects client connection attempts - either new clients or previously-connected clients - a recovery timer starts and forces recovery to finish in a finite time regardless of whether the previously-connected clients are available or not.
If no client entries are present in the last_rcvd file, or if the administrator manually aborts recovery, the server does not wait for client reconnection and proceeds to allow all clients to connect.
As clients connect, the server gathers information from each one to determine how long the recovery needs to take. Each client reports its connection UUID, and the server does a lookup for this UUID in the last_rcvd file to determine if this client was previously connected. If not, the client is refused connection and it will retry until recovery is completed. Each client reports its last seen transaction, so the server knows when all transactions have been replayed. The client also reports the amount of time that it was previously waiting for request completion so that the server can estimate how long some clients might need to detect the server failure and reconnect.
If the client times out during replay, it attempts to reconnect. If the client is unable to reconnect, REPLAY fails and it returns to DISCON state. It is possible that clients will timeout frequently during REPLAY, so reconnection should not delay an already slow process more than necessary. We can mitigate this by increasing the timeout during replay.

37.2.6. Request Replay

If a client was previously connected, it gets a response from the server telling it that the server is in recovery and what the last committed transaction number on disk is. The client can then iterate through its replay list and use this last committed transaction number to prune any previously-committed requests. It replays any newer requests to the server in transaction number order, one at a time, waiting for a reply from the server before replaying the next request.
Open requests that are on the replay list may have a transaction number lower than the server's last committed transaction number. The server processes those open requests immediately. The server then processes replayed requests from all of the clients in transaction number order, starting at the last committed transaction number to ensure that the state is updated on disk in exactly the same manner as it was before the crash. As each replayed request is processed, the last committed transaction is incremented. If the server receives a replay request from a client that is higher than the current last committed transaction, that request is put aside until other clients provide the intervening transactions. In this manner, the server replays requests in the same sequence as they were previously executed on the server until either all clients are out of requests to replay or there is a gap in a sequence.

37.2.7. Gaps in the Replay Sequence

In some cases, a gap may occur in the reply sequence. This might be caused by lost replies, where the request was processed and committed to disk but the reply was not received by the client. It can also be caused by clients missing from recovery due to partial network failure or client death.
In the case where all clients have reconnected, but there is a gap in the replay sequence the only possibility is that some requests were processed by the server but the reply was lost. Since the client must still have these requests in its resend list, they are processed after recovery is finished.
In the case where all clients have not reconnected, it is likely that the failed clients had requests that will no longer be replayed. The VBR feature is used to determine if a request following a transaction gap is safe to be replayed. Each item in the file system (MDS inode or OST object) stores on disk the number of the last transaction in which it was modified. Each reply from the server contains the previous version number of the objects that it affects. During VBR replay, the server matches the previous version numbers in the resend request against the current version number. If the versions match, the request is the next one that affects the object and can be safely replayed. For more information, see Section 37.4, “Version-based Recovery”.

37.2.8. Lock Recovery

If all requests were replayed successfully and all clients reconnected, clients then do
 lock replay locks -- that is, every client sends information about every lock it holds from
 this server and its state (whenever it was granted or not, what mode, what properties and so
 on), and then recovery completes successfully. Currently, the Lustre software does not do
 lock verification and just trusts clients to present an accurate lock state. This does not
 impart any security concerns since Lustre software release 1.x clients are trusted for other
 information (e.g. user ID) during normal operation also.
After all of the saved requests and locks have been replayed, the client sends an MDS_GETSTATUS request with last-replay flag set. The reply to that request is held back until all clients have completed replay (sent the same flagged getstatus request), so that clients don't send non-recovery requests before recovery is complete.

37.2.9. Request Resend

Once all of the previously-shared state has been recovered on the server (the target file system is up-to-date with client cache and the server has recreated locks representing the locks held by the client), the client can resend any requests that did not receive an earlier reply. This processing is done like normal request processing, and, in some cases, the server may do reply reconstruction.

37.3. Reply Reconstruction

When a reply is dropped, the MDS needs to be able to reconstruct the reply when the original request is re-sent. This must be done without repeating any non-idempotent operations, while preserving the integrity of the locking system. In the event of MDS failover, the information used to reconstruct the reply must be serialized on the disk in transactions that are joined or nested with those operating on the disk.
37.3.1. Required State

For the majority of requests, it is sufficient for the server to store three pieces of data in the last_rcvd file:
	 XID of the request

	 Resulting transno (if any)

	 Result code (req->rq_status)

For open requests, the "disposition" of the open must also be stored.

37.3.2. Reconstruction of Open Replies

An open reply consists of up to three pieces of information (in addition to the contents of the "request log"):
	File handle

	Lock handle

	mds_body with information about the file created (for O_CREAT)

The disposition, status and request data (re-sent intact by the client) are sufficient to determine which type of lock handle was granted, whether an open file handle was created, and which resource should be described in the mds_body.
37.3.2.1. Finding the File Handle

The file handle can be found in the XID of the request and the list of per-export open file handles. The file handle contains the resource/FID.

37.3.2.2. Finding the Resource/fid

The file handle contains the resource/fid.

37.3.2.3. Finding the Lock Handle

The lock handle can be found by walking the list of granted locks for the resource looking for one with the appropriate remote file handle (present in the re-sent request). Verify that the lock has the right mode (determined by performing the disposition/request/status analysis above) and is granted to the proper client.

Introduced in Lustre 2.837.3.3. Multiple Reply Data per Client

Since Lustre 2.8, the MDS is able to save several reply data per client. The reply data are stored in the reply_data internal file of the MDT. Additionally to the XID of the request, the transaction number, the result code and the open "disposition", the reply data contains a generation number that identifies the client thanks to the content of the last_rcvd file.

37.4. Version-based Recovery

The Version-based Recovery (VBR) feature improves Lustre file system reliability in cases
 where client requests (RPCs) fail to replay during recovery [3].
In pre-VBR releases of the Lustre software, if the MGS or an OST went down and then
 recovered, a recovery process was triggered in which clients attempted to replay their
 requests. Clients were only allowed to replay RPCs in serial order. If a particular client
 could not replay its requests, then those requests were lost as well as the requests of
 clients later in the sequence. The ''downstream'' clients never got to
 replay their requests because of the wait on the earlier client's RPCs. Eventually, the
 recovery period would time out (so the component could accept new requests), leaving some
 number of clients evicted and their requests and data lost.
With VBR, the recovery mechanism does not result in the loss of clients or their data, because changes in inode versions are tracked, and more clients are able to reintegrate into the cluster. With VBR, inode tracking looks like this:
	Each inode[4] stores a version, that is, the number of the last transaction (transno) in which the inode was changed.

	When an inode is about to be changed, a pre-operation version of the inode is saved in the client's data.

	The client keeps the pre-operation inode version and the post-operation version (transaction number) for replay, and sends them in the event of a server failure.

	If the pre-operation version matches, then the request is replayed. The post-operation version is assigned on all inodes modified in the request.

Note
An RPC can contain up to four pre-operation versions, because several inodes can be involved in an operation. In the case of a ''rename'' operation, four different inodes can be modified.

During normal operation, the server:
	Updates the versions of all inodes involved in a given operation

	Returns the old and new inode versions to the client with the reply

When the recovery mechanism is underway, VBR follows these steps:
	VBR only allows clients to replay transactions if the affected inodes have the same version as during the original execution of the transactions, even if there is gap in transactions due to a missed client.

	The server attempts to execute every transaction that the client offers, even if it encounters a re-integration failure.

	When the replay is complete, the client and server check if a replay failed on any transaction because of inode version mismatch. If the versions match, the client gets a successful re-integration message. If the versions do not match, then the client is evicted.

VBR recovery is fully transparent to users. It may lead to slightly longer recovery times if the cluster loses several clients during server recovery.
37.4.1. VBR Messages

The VBR feature is built into the Lustre file system recovery functionality. It cannot
 be disabled. These are some VBR messages that may be displayed:
DEBUG_REQ(D_WARNING, req, "Version mismatch during replay\n");
This message indicates why the client was evicted. No action is needed.
CWARN("%s: version recovery fails, reconnecting\n");
This message indicates why the recovery failed. No action is needed.

37.4.2. Tips for Using VBR

VBR will be successful for clients which do not share data with other client. Therefore, the strategy for reliable use of VBR is to store a client's data in its own directory, where possible. VBR can recover these clients, even if other clients are lost.

[3] There are two scenarios under which client RPCs are not replayed: (1) Non-functioning
 or isolated clients do not reconnect, and they cannot replay their RPCs, causing a gap in
 the replay sequence. These clients get errors and are evicted. (2) Functioning clients
 connect, but they cannot replay some or all of their RPCs that occurred after the gap
 caused by the non-functioning/isolated clients. These clients get errors (caused by the
 failed clients). With VBR, these requests have a better chance to replay because the
 "gaps" are only related to specific files that the missing client(s)
 changed.

[4] Usually, there are two inodes, a parent and a child.

37.5. Commit on Share

The commit-on-share (COS) feature makes Lustre file system recovery more reliable by
 preventing missing clients from causing cascading evictions of other clients. With COS
 enabled, if some Lustre clients miss the recovery window after a reboot or a server failure,
 the remaining clients are not evicted.
Note
The commit-on-share feature is enabled, by default.

37.5.1. Working with Commit on Share

To illustrate how COS works, let's first look at the old recovery scenario. After a service restart, the MDS would boot and enter recovery mode. Clients began reconnecting and replaying their uncommitted transactions. Clients could replay transactions independently as long as their transactions did not depend on each other (one client's transactions did not depend on a different client's transactions). The MDS is able to determine whether one transaction is dependent on another transaction via the Section 37.4, “Version-based Recovery” feature.
If there was a dependency between client transactions (for example, creating and deleting the same file), and one or more clients did not reconnect in time, then some clients may have been evicted because their transactions depended on transactions from the missing clients. Evictions of those clients caused more clients to be evicted and so on, resulting in "cascading" client evictions.
COS addresses the problem of cascading evictions by eliminating dependent transactions between clients. It ensures that one transaction is committed to disk if another client performs a transaction dependent on the first one. With no dependent, uncommitted transactions to apply, the clients replay their requests independently without the risk of being evicted.

37.5.2. Tuning Commit On Share

Commit on Share can be enabled or disabled using the mdt.commit_on_sharing tunable (0/1). This tunable can be set when the MDS is created (mkfs.lustre) or when the Lustre file system is active, using the lctl set/get_param or lctl conf_param commands.
To set a default value for COS (disable/enable) when the file system is created, use:
--param mdt.commit_on_sharing=0/1

To disable or enable COS when the file system is running, use:
lctl set_param mdt.*.commit_on_sharing=0/1

Note
Enabling COS may cause the MDS to do a large number of synchronous disk operations, hurting performance. Placing the ldiskfs journal on a low-latency external device may improve file system performance.

37.6. Imperative Recovery

Imperative Recovery (IR) was first introduced in Lustre software release 2.2.0.
Large-scale Lustre file system implementations have historically experienced problems
 recovering in a timely manner after a server failure. This is due to the way that clients
 detect the server failure and how the servers perform their recovery. Many of the processes
 are driven by the RPC timeout, which must be scaled with system size to prevent false
 diagnosis of server death. The purpose of imperative recovery is to reduce the recovery window
 by actively informing clients of server failure. The resulting reduction in the recovery
 window will minimize target downtime and therefore increase overall system availability.
 Imperative Recovery does not remove previous recovery mechanisms, and client timeout-based
 recovery actions can occur in a cluster when IR is enabled as each client can still
 independently disconnect and reconnect from a target. In case of a mix of IR and non-IR
 clients connecting to an OST or MDT, the server cannot reduce its recovery timeout window,
 because it cannot be sure that all clients have been notified of the server restart in a
 timely manner. Even in such mixed environments the time to complete recovery may be reduced,
 since IR-enabled clients will still be notified to reconnect to the server promptly and allow
 recovery to complete as soon as the last non-IR client detects the server failure.
37.6.1. MGS role

The MGS now holds additional information about Lustre targets, in the form of a Target Status
 Table. Whenever a target registers with the MGS, there is a corresponding entry in this
 table identifying the target. This entry includes NID information, and state/version
 information for the target. When a client mounts the file system, it caches a locked copy of
 this table, in the form of a Lustre configuration log. When a target restart occurs, the MGS
 revokes the client lock, forcing all clients to reload the table. Any new targets will have
 an updated version number, the client detects this and reconnects to the restarted target.
 Since successful IR notification of server restart depends on all clients being registered
 with the MGS, and there is no other node to notify clients in case of MGS restart, the MGS
 will disable IR for a period when it first starts. This interval is configurable, as shown
 in Section 37.6.2, “Tuning Imperative Recovery”
Because of the increased importance of the MGS in recovery, it is strongly recommended that the MGS node be separate from the MDS. If the MGS is co-located on the MDS node, then in case of MDS/MGS failure there will be no IR notification for the MDS restart, and clients will always use timeout-based recovery for the MDS. IR notification would still be used in the case of OSS failure and recovery.
Unfortunately, it’s impossible for the MGS to know how many clients have been successfully notified or whether a specific client has received the restarting target information. The only thing the MGS can do is tell the target that, for example, all clients are imperative recovery-capable, so it is not necessary to wait as long for all clients to reconnect. For this reason, we still require a timeout policy on the target side, but this timeout value can be much shorter than normal recovery.

37.6.2. Tuning Imperative Recovery

Imperative recovery has a default parameter set which means it can work without any extra configuration. However, the default parameter set only fits a generic configuration. The following sections discuss the configuration items for imperative recovery.
37.6.2.1. ir_factor

Ir_factor is used to control targets’ recovery window. If imperative recovery is enabled, the recovery timeout window on the restarting target is calculated by: new timeout = recovery_time * ir_factor / 10 Ir_factor must be a value in range of [1, 10]. The default value of ir_factor is 5. The following example will set imperative recovery timeout to 80% of normal recovery timeout on the target testfs-OST0000:
lctl conf_param obdfilter.testfs-OST0000.ir_factor=8
Note
If this value is too small for the system, clients may be unnecessarily evicted

You can read the current value of the parameter in the standard manner with lctl get_param:

lctl get_param obdfilter.testfs-OST0000.ir_factor
obdfilter.testfs-OST0000.ir_factor=8

37.6.2.2. Disabling Imperative Recovery

Imperative recovery can be disabled manually by a mount option. For example, imperative recovery can be disabled on an OST by:
mount -t lustre -onoir /dev/sda /mnt/ost1
Imperative recovery can also be disabled on the client side with the same mount option:
mount -t lustre -onoir mymgsnid@tcp:/testfs /mnt/testfs
Note
When a single client is deactivated in this manner, the MGS will deactivate imperative recovery for the whole cluster. IR-enabled clients will still get notification of target restart, but targets will not be allowed to shorten the recovery window.

You can also disable imperative recovery globally on the MGS by writing `state=disabled’ to the controlling procfs entry
lctl set_param mgs.MGS.live.testfs="state=disabled"
The above command will disable imperative recovery for file system named testfs

37.6.2.3. Checking Imperative Recovery State - MGS

You can get the imperative recovery state from the MGS. Let’s take an example and explain states of imperative recovery:

[mgs]$ lctl get_param mgs.MGS.live.testfs
...
imperative_recovery_state:
 state: full
 nonir_clients: 0
 nidtbl_version: 242
 notify_duration_total: 0.470000
 notify_duation_max: 0.041000
 notify_count: 38

	
		Item

			
		Meaning

		
	
			
			state
			

			
				full: IR is working, all clients are connected and can be notified.

	partial: some clients are not IR capable.

	disabled: IR is disabled, no client notification.

	startup: the MGS was just restarted, so not all clients may reconnect to the MGS.

		
	
			
			nonir_clients
			

			
			Number of non-IR capable clients in the system.

		
	
			
			nidtbl_version
			

			
			Version number of the target status table. Client version must match MGS.

		
	
			
			notify_duration_total
			

			
			[Seconds.microseconds] Total time spent by MGS notifying clients

		
	
			
			notify_duration_max
			

			
			[Seconds.microseconds] Maximum notification time for the MGS to notify a single IR client.

		
	
			
			notify_count
			

			
			Number of MGS restarts - to obtain average notification time, divide notify_duration_total by notify_count

		

37.6.2.4. Checking Imperative Recovery State - client

A `client’ in IR means a Lustre client or a MDT. You can get the IR state on any node which
 running client or MDT, those nodes will always have an MGC running. An example from a
 client:

[client]$ lctl get_param mgc.*.ir_state
mgc.MGC192.168.127.6@tcp.ir_state=
imperative_recovery: ON
client_state:
 - { client: testfs-client, nidtbl_version: 242 }
	
An example from a MDT:

mgc.MGC192.168.127.6@tcp.ir_state=
imperative_recovery: ON
client_state:
 - { client: testfs-MDT0000, nidtbl_version: 242 }
	
	
		Item

			
		Meaning

		
	
			
			imperative_recovery
			

			
			imperative_recoverycan be ON or OFF. If it’s OFF state, then IR is disabled by administrator at mount time. Normally this should be ON state.

		
	
			
			client_state: client:
			

			
			The name of the client

		
	
			
			client_state: nidtbl_version
			

			
			Version number of the target status table. Client version must match MGS.

		

37.6.2.5. Target Instance Number

The Target Instance number is used to determine if a client is connecting to the latest instance of a target. We use the lowest 32 bit of mount count as target instance number. For an OST you can get the target instance number of testfs-OST0001 in this way (the command is run from an OSS login prompt):

$ lctl get_param obdfilter.testfs-OST0001*.instance
obdfilter.testfs-OST0001.instance=5

From a client, query the relevant OSC:

$ lctl get_param osc.testfs-OST0001-osc-*.import |grep instance
 instance: 5

37.6.3. Configuration Suggestions for Imperative Recovery

We used to build the MGS and MDT0 on the same target to save a server node. However, to make
 IR work efficiently, we strongly recommend running the MGS node on a separate node for any
 significant Lustre file system installation. There are three main advantages of doing this:
	Be able to notify clients if the MDT0 is dead

	Load balance. The load on the MDS may be very high which may make the MGS unable to notify the clients in time

	Safety. The MGS code is simpler and much smaller compared to the code of MDT. This means the chance of MGS down time due to a software bug is very low.

37.7. Suppressing Pings

On clusters with large numbers of clients and OSTs, OBD_PING messages may impose
 significant performance overheads. As an intermediate solution before a more self-contained
 one is built, Lustre software release 2.4 introduces an option to suppress pings, allowing
 ping overheads to be considerably reduced. Before turning on this option, administrators
 should consider the following requirements and understand the trade-offs involved:
	When suppressing pings, a target can not detect client deaths, since clients do not
 send pings that are only to keep their connections alive. Therefore, a mechanism external
 to the Lustre file system shall be set up to notify Lustre targets of client deaths in a
 timely manner, so that stale connections do not exist for too long and lock callbacks to
 dead clients do not always have to wait for timeouts.

	Without pings, a client has to rely on Imperative Recovery to notify it of target failures, in order to join recoveries in time. This dictates that the client shall eargerly keep its MGS connection alive. Thus, a highly available standalone MGS is recommended and, on the other hand, MGS pings are always sent regardless of how the option is set.

	If a client has uncommitted requests to a target and it is not sending any new requests on the connection, it will still ping that target even when pings should be suppressed. This is because the client needs to query the target's last committed transaction numbers in order to free up local uncommitted requests (and possibly other resources associated). However, these pings shall stop as soon as all the uncommitted requests have been freed or new requests need to be sent, rendering the pings unnecessary.

37.7.1. "suppress_pings" Kernel Module Parameter

The new option that controls whether pings are suppressed is implemented as the ptlrpc kernel module parameter "suppress_pings". Setting it to "1" on a server turns on ping suppressing for all targets on that server, while leaving it with the default value "0" gives previous pinging behavior. The parameter is ignored on clients and the MGS. While the parameter is recommended to be set persistently via the modprobe.conf(5) mechanism, it also accept online changes through sysfs. Note that an online change only affects connections established later; existing connections' pinging behaviors stay the same.

37.7.2. Client Death Notification

The required external client death notification shall write UUIDs of dead clients into targets' "evict_client" procfs entries like

/proc/fs/lustre/obdfilter/testfs-OST0000/evict_client
/proc/fs/lustre/obdfilter/testfs-OST0001/evict_client
/proc/fs/lustre/mdt/testfs-MDT0000/evict_client

Clients' UUIDs can be obtained from their "uuid" procfs entries like

/proc/fs/lustre/llite/testfs-ffff8800612bf800/uuid

Chapter 38. Lustre Parameters

The /proc and /sys file systems
 acts as an interface to internal data structures in the kernel. This chapter
 describes parameters and tunables that are useful for optimizing and
 monitoring aspects of a Lustre file system. It includes these sections:
	Section 38.10, “Enabling and Interpreting Debugging Logs”
.

38.1. Introduction to Lustre Parameters

Lustre parameters and statistics files provide an interface to
 internal data structures in the kernel that enables monitoring and
 tuning of many aspects of Lustre file system and application performance.
 These data structures include settings and metrics for components such
 as memory, networking, file systems, and kernel housekeeping routines,
 which are available throughout the hierarchical file layout.

Typically, metrics are accessed via lctl get_param
 files and settings are changed by via lctl set_param.
 While it is possible to access parameters in /proc
 and /sys directly, the location of these parameters may
 change between releases, so it is recommended to always use
 lctl to access the parameters from userspace scripts.
 Some data is server-only, some data is client-only, and some data is
 exported from the client to the server and is thus duplicated in both
 locations.
Note
In the examples in this chapter, # indicates
 a command is entered as root. Lustre servers are named according to the
 convention fsname-MDT|OSTnumber.
 The standard UNIX wildcard designation (*) is used.

Some examples are shown below:
	 To obtain data from a Lustre client:
lctl list_param osc.*
osc.testfs-OST0000-osc-ffff881071d5cc00
osc.testfs-OST0001-osc-ffff881071d5cc00
osc.testfs-OST0002-osc-ffff881071d5cc00
osc.testfs-OST0003-osc-ffff881071d5cc00
osc.testfs-OST0004-osc-ffff881071d5cc00
osc.testfs-OST0005-osc-ffff881071d5cc00
osc.testfs-OST0006-osc-ffff881071d5cc00
osc.testfs-OST0007-osc-ffff881071d5cc00
osc.testfs-OST0008-osc-ffff881071d5cc00
In this example, information about OST connections available
 on a client is displayed (indicated by "osc").

	 To see multiple levels of parameters, use multiple
 wildcards:
lctl list_param osc.*.*
osc.testfs-OST0000-osc-ffff881071d5cc00.active
osc.testfs-OST0000-osc-ffff881071d5cc00.blocksize
osc.testfs-OST0000-osc-ffff881071d5cc00.checksum_type
osc.testfs-OST0000-osc-ffff881071d5cc00.checksums
osc.testfs-OST0000-osc-ffff881071d5cc00.connect_flags
osc.testfs-OST0000-osc-ffff881071d5cc00.contention_seconds
osc.testfs-OST0000-osc-ffff881071d5cc00.cur_dirty_bytes
...
osc.testfs-OST0000-osc-ffff881071d5cc00.rpc_stats

	 To view a specific file, use lctl get_param:

lctl get_param osc.lustre-OST0000*.rpc_stats

For more information about using lctl, see Section 13.11.3, “Setting Parameters with
 lctl”.
Data can also be viewed using the cat command
 with the full path to the file. The form of the cat
 command is similar to that of the lctl get_param
 command with some differences. Unfortunately, as the Linux kernel has
 changed over the years, the location of statistics and parameter files
 has also changed, which means that the Lustre parameter files may be
 located in either the /proc directory, in the
 /sys directory, and/or in the
 /sys/kernel/debug directory, depending on the kernel
 version and the Lustre version being used. The lctl
 command insulates scripts from these changes and is preferred over direct
 file access, unless as part of a high-performance monitoring system.
 In the cat command:
	Replace the dots in the path with slashes.

	Prepend the path with the appropriate directory component:

/{proc,sys}/{fs,sys}/{lustre,lnet}

For example, an lctl get_param command may look like
 this:
lctl get_param osc.*.uuid
osc.testfs-OST0000-osc-ffff881071d5cc00.uuid=594db456-0685-bd16-f59b-e72ee90e9819
osc.testfs-OST0001-osc-ffff881071d5cc00.uuid=594db456-0685-bd16-f59b-e72ee90e9819
...
The equivalent cat command may look like this:

cat /proc/fs/lustre/osc/*/uuid
594db456-0685-bd16-f59b-e72ee90e9819
594db456-0685-bd16-f59b-e72ee90e9819
...
or like this:

cat /sys/fs/lustre/osc/*/uuid
594db456-0685-bd16-f59b-e72ee90e9819
594db456-0685-bd16-f59b-e72ee90e9819
...
The llstat utility can be used to monitor some
 Lustre file system I/O activity over a specified time period. For more
 details, see
 Section 43.8, “
llstat”
Some data is imported from attached clients and is available in a
 directory called exports located in the corresponding
 per-service directory on a Lustre server. For example:

oss:/root# lctl list_param obdfilter.testfs-OST0000.exports.*
hash ldlm_stats stats uuid
38.1.1. Identifying Lustre File Systems and Servers

Several parameter files on the MGS list existing
 Lustre file systems and file system servers. The examples below are for
 a Lustre file system called
 testfs with one MDT and three OSTs.
	 To view all known Lustre file systems, enter:
mgs# lctl get_param mgs.*.filesystems
testfs

	 To view the names of the servers in a file system in which least one server is
 running,
 enter:
lctl get_param mgs.*.live.<filesystem name>
For example:
mgs# lctl get_param mgs.*.live.testfs
fsname: testfs
flags: 0x20 gen: 45
testfs-MDT0000
testfs-OST0000
testfs-OST0001
testfs-OST0002

Secure RPC Config Rules:

imperative_recovery_state:
 state: startup
 nonir_clients: 0
 nidtbl_version: 6
 notify_duration_total: 0.001000
 notify_duation_max: 0.001000
 notify_count: 4

	To list all configured devices on the local node, enter:
lctl device_list
0 UP mgs MGS MGS 11
1 UP mgc MGC192.168.10.34@tcp 1f45bb57-d9be-2ddb-c0b0-5431a49226705
2 UP mdt MDS MDS_uuid 3
3 UP lov testfs-mdtlov testfs-mdtlov_UUID 4
4 UP mds testfs-MDT0000 testfs-MDT0000_UUID 7
5 UP osc testfs-OST0000-osc testfs-mdtlov_UUID 5
6 UP osc testfs-OST0001-osc testfs-mdtlov_UUID 5
7 UP lov testfs-clilov-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa04
8 UP mdc testfs-MDT0000-mdc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
9 UP osc testfs-OST0000-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
10 UP osc testfs-OST0001-osc-ce63ca00 08ac6584-6c4a-3536-2c6d-b36cf9cbdaa05
The information provided on each line includes:
 - Device number
 - Device status (UP, INactive, or STopping)
 - Device name
 - Device UUID
 - Reference count (how many users this device has)

	To display the name of any server, view the device
 label:
mds# e2label /dev/sda
testfs-MDT0000

38.2. Tuning Multi-Block Allocation (mballoc)

Capabilities supported by mballoc include:
	 Pre-allocation for single files to help to reduce fragmentation.

	 Pre-allocation for a group of files to enable packing of small files into large,
 contiguous chunks.

	 Stream allocation to help decrease the seek rate.

The following mballoc tunables are available:
	
 Field

 	
 Description

	

 mb_max_to_scan

 	
 Maximum number of free chunks that mballoc finds before a
 final decision to avoid a livelock situation.

	

 mb_min_to_scan

 	
 Minimum number of free chunks that mballoc searches before
 picking the best chunk for allocation. This is useful for small requests to reduce
 fragmentation of big free chunks.

	

 mb_order2_req

 	
 For requests equal to 2^N, where N >= mb_order2_req, a
 fast search is done using a base 2 buddy allocation service.

	

 mb_small_req

 	
 mb_small_req - Defines (in MB) the upper bound of "small
 requests".

 mb_large_req - Defines (in MB) the lower bound of "large
 requests".

 Requests are handled differently based on size:
	< mb_small_req - Requests are packed together to
 form large, aggregated requests.

	> mb_small_req and < mb_large_req
 - Requests are primarily allocated linearly.

	> mb_large_req - Requests are allocated since hard disk
 seek time is less of a concern in this case.

 In general, small requests are combined to create larger requests, which are
 then placed close to one another to minimize the number of seeks required to access
 the data.

	

 mb_large_req

	

 prealloc_table

 	
 A table of values used to preallocate space when a new request is received. By
 default, the table looks like
 this:
prealloc_table
4 8 16 32 64 128 256 512 1024 2048

 When a new request is received, space is preallocated at the next higher
 increment specified in the table. For example, for requests of less than 4 file
 system blocks, 4 blocks of space are preallocated; for requests between 4 and 8, 8
 blocks are preallocated; and so forth

 Although customized values can be entered in the table, the performance of
 general usage file systems will not typically be improved by modifying the table (in
 fact, in ext4 systems, the table values are fixed). However, for some specialized
 workloads, tuning the prealloc_table values may result in smarter
 preallocation decisions.

	

 mb_group_prealloc

 	
 The amount of space (in kilobytes) preallocated for groups of small
 requests.

Buddy group cache information found in
 /sys/fs/ldiskfs/disk_device/mb_groups may
 be useful for assessing on-disk fragmentation. For
 example:
cat /proc/fs/ldiskfs/loop0/mb_groups
#group: free free frags first pa [2^0 2^1 2^2 2^3 2^4 2^5 2^6 2^7 2^8 2^9
 2^10 2^11 2^12 2^13]
#0 : 2936 2936 1 42 0 [0 0 0 1 1 1 1 2 0 1
 2 0 0 0]
In this example, the columns show:
	#group number

	Available blocks in the group

	Blocks free on a disk

	Number of free fragments

	First free block in the group

	Number of preallocated chunks (not blocks)

	A series of available chunks of different sizes

38.3. Monitoring Lustre File System I/O

A number of system utilities are provided to enable collection of data related to I/O
 activity in a Lustre file system. In general, the data collected describes:
	 Data transfer rates and throughput of inputs and outputs external to the Lustre file
 system, such as network requests or disk I/O operations performed

	 Data about the throughput or transfer rates of internal Lustre file system data, such
 as locks or allocations.

Note
It is highly recommended that you complete baseline testing for your Lustre file system
 to determine normal I/O activity for your hardware, network, and system workloads. Baseline
 data will allow you to easily determine when performance becomes degraded in your system.
 Two particularly useful baseline statistics are:
	brw_stats – Histogram data characterizing I/O requests to the
 OSTs. For more details, see Section 38.3.5, “Monitoring the OST Block I/O Stream”.

	rpc_stats – Histogram data showing information about RPCs made by
 clients. For more details, see Section 38.3.1, “Monitoring the Client RPC Stream”.

38.3.1. Monitoring the Client RPC Stream

The rpc_stats file contains histogram data showing information about
 remote procedure calls (RPCs) that have been made since this file was last cleared. The
 histogram data can be cleared by writing any value into the rpc_stats
 file.
Example:
lctl get_param osc.testfs-OST0000-osc-ffff810058d2f800.rpc_stats
snapshot_time: 1372786692.389858 (secs.usecs)
read RPCs in flight: 0
write RPCs in flight: 1
dio read RPCs in flight: 0
dio write RPCs in flight: 0
pending write pages: 256
pending read pages: 0

 read write
pages per rpc rpcs % cum % | rpcs % cum %
1: 0 0 0 | 0 0 0
2: 0 0 0 | 1 0 0
4: 0 0 0 | 0 0 0
8: 0 0 0 | 0 0 0
16: 0 0 0 | 0 0 0
32: 0 0 0 | 2 0 0
64: 0 0 0 | 2 0 0
128: 0 0 0 | 5 0 0
256: 850 100 100 | 18346 99 100

 read write
rpcs in flight rpcs % cum % | rpcs % cum %
0: 691 81 81 | 1740 9 9
1: 48 5 86 | 938 5 14
2: 29 3 90 | 1059 5 20
3: 17 2 92 | 1052 5 26
4: 13 1 93 | 920 5 31
5: 12 1 95 | 425 2 33
6: 10 1 96 | 389 2 35
7: 30 3 100 | 11373 61 97
8: 0 0 100 | 460 2 100

 read write
offset rpcs % cum % | rpcs % cum %
0: 850 100 100 | 18347 99 99
1: 0 0 100 | 0 0 99
2: 0 0 100 | 0 0 99
4: 0 0 100 | 0 0 99
8: 0 0 100 | 0 0 99
16: 0 0 100 | 1 0 99
32: 0 0 100 | 1 0 99
64: 0 0 100 | 3 0 99
128: 0 0 100 | 4 0 100

The header information includes:
	snapshot_time - UNIX epoch instant the file was read.

	read RPCs in flight - Number of read RPCs issued by the OSC, but
 not complete at the time of the snapshot. This value should always be less than or equal
 to max_rpcs_in_flight.

	write RPCs in flight - Number of write RPCs issued by the OSC,
 but not complete at the time of the snapshot. This value should always be less than or
 equal to max_rpcs_in_flight.

	dio read RPCs in flight - Direct I/O (as opposed to block I/O)
 read RPCs issued but not completed at the time of the snapshot.

	dio write RPCs in flight - Direct I/O (as opposed to block I/O)
 write RPCs issued but not completed at the time of the snapshot.

	pending write pages - Number of pending write pages that have
 been queued for I/O in the OSC.

	pending read pages - Number of pending read pages that have been
 queued for I/O in the OSC.

The tabular data is described in the table below. Each row in the table shows the number
 of reads or writes (ios) occurring for the statistic, the relative
 percentage (%) of total reads or writes, and the cumulative percentage
 (cum %) to that point in the table for the statistic.
	
 Field

 	
 Description

	
 pages per RPC

 	
 Shows cumulative RPC reads and writes organized according to the number of
 pages in the RPC. A single page RPC increments the 0:
 row.

	
 RPCs in flight

 	
 Shows the number of RPCs that are pending when an RPC is sent. When the first
 RPC is sent, the 0: row is incremented. If the first RPC is
 sent while another RPC is pending, the 1: row is incremented
 and so on.

	
 offset

 	
 The page index of the first page read from or written to the object by the
 RPC.

Analysis:
This table provides a way to visualize the concurrency of the RPC stream. Ideally, you
 will see a large clump around the max_rpcs_in_flight value, which shows
 that the network is being kept busy.
For information about optimizing the client I/O RPC stream, see Section 38.4.1, “Tuning the Client I/O RPC Stream”.

38.3.2. Monitoring Client Activity

The stats file maintains statistics accumulate during typical
 operation of a client across the VFS interface of the Lustre file system. Only non-zero
 parameters are displayed in the file.
Client statistics are enabled by default.
Note
Statistics for all mounted file systems can be discovered by
 entering:
lctl get_param llite.*.stats

Example:
client# lctl get_param llite.*.stats
snapshot_time 1308343279.169704 secs.usecs
dirty_pages_hits 14819716 samples [regs]
dirty_pages_misses 81473472 samples [regs]
read_bytes 36502963 samples [bytes] 1 26843582 55488794
write_bytes 22985001 samples [bytes] 0 125912 3379002
brw_read 2279 samples [pages] 1 1 2270
ioctl 186749 samples [regs]
open 3304805 samples [regs]
close 3331323 samples [regs]
seek 48222475 samples [regs]
fsync 963 samples [regs]
truncate 9073 samples [regs]
setxattr 19059 samples [regs]
getxattr 61169 samples [regs]

 The statistics can be cleared by echoing an empty string into the
 stats file or by using the command:

lctl set_param llite.*.stats=0
The statistics displayed are described in the table below.
	
 Entry

 	
 Description

	

 snapshot_time

 	
 UNIX epoch instant the stats file was read.

	

 dirty_page_hits

 	
 The number of write operations that have been satisfied by the dirty page
 cache. See Section 38.4.1, “Tuning the Client I/O RPC Stream” for more information about dirty cache
 behavior in a Lustre file system.

	

 dirty_page_misses

 	
 The number of write operations that were not satisfied by the dirty page
 cache.

	

 read_bytes

 	
 The number of read operations that have occurred. Three additional parameters
 are displayed:

 	min
	The minimum number of bytes read in a single request since the counter
 was reset.

	max
	The maximum number of bytes read in a single request since the counter
 was reset.

	sum
	The accumulated sum of bytes of all read requests since the counter was
 reset.

	

 write_bytes

 	
 The number of write operations that have occurred. Three additional parameters
 are displayed:

 	min
	The minimum number of bytes written in a single request since the
 counter was reset.

	max
	The maximum number of bytes written in a single request since the
 counter was reset.

	sum
	The accumulated sum of bytes of all write requests since the counter was
 reset.

	

 brw_read

 	
 The number of pages that have been read. Three additional parameters are
 displayed:

 	min
	The minimum number of bytes read in a single block read/write
 (brw) read request since the counter was reset.

	max
	The maximum number of bytes read in a single brw read
 requests since the counter was reset.

	sum
	The accumulated sum of bytes of all brw read requests
 since the counter was reset.

	

 ioctl

 	
 The number of combined file and directory ioctl
 operations.

	

 open

 	
 The number of open operations that have succeeded.

	

 close

 	
 The number of close operations that have succeeded.

	

 seek

 	
 The number of times seek has been called.

	

 fsync

 	
 The number of times fsync has been called.

	

 truncate

 	
 The total number of calls to both locked and lockless
 truncate.

	

 setxattr

 	
 The number of times extended attributes have been set.

	

 getxattr

 	
 The number of times value(s) of extended attributes have been fetched.

Analysis:
Information is provided about the amount and type of I/O activity is taking place on the
 client.

38.3.3. Monitoring Client Read-Write Offset Statistics

When the offset_stats parameter is set, statistics are maintained for
 occurrences of a series of read or write calls from a process that did not access the next
 sequential location. The OFFSET field is reset to 0 (zero) whenever a
 different file is read or written.
Note
By default, statistics are not collected in the offset_stats,
 extents_stats, and extents_stats_per_process files
 to reduce monitoring overhead when this information is not needed. The collection of
 statistics in all three of these files is activated by writing
 anything, except for 0 (zero) and "disable", into any one of the
 files.

Example:
lctl get_param llite.testfs-f57dee0.offset_stats
snapshot_time: 1155748884.591028 (secs.usecs)
 RANGE RANGE SMALLEST LARGEST
R/W PID START END EXTENT EXTENT OFFSET
R 8385 0 128 128 128 0
R 8385 0 224 224 224 -128
W 8385 0 250 50 100 0
W 8385 100 1110 10 500 -150
W 8384 0 5233 5233 5233 0
R 8385 500 600 100 100 -610
In this example, snapshot_time is the UNIX epoch instant the file was
 read. The tabular data is described in the table below.
The offset_stats file can be cleared by
 entering:
lctl set_param llite.*.offset_stats=0
	
 Field

 	
 Description

	
 R/W

 	
 Indicates if the non-sequential call was a read or write

	
 PID

 	
 Process ID of the process that made the read/write call.

	
 RANGE START/RANGE END

 	
 Range in which the read/write calls were sequential.

	
 SMALLEST EXTENT

 	
 Smallest single read/write in the corresponding range (in bytes).

	
 LARGEST EXTENT

 	
 Largest single read/write in the corresponding range (in bytes).

	
 OFFSET

 	
 Difference between the previous range end and the current range start.

Analysis:
This data provides an indication of how contiguous or fragmented the data is. For
 example, the fourth entry in the example above shows the writes for this RPC were sequential
 in the range 100 to 1110 with the minimum write 10 bytes and the maximum write 500 bytes.
 The range started with an offset of -150 from the RANGE END of the
 previous entry in the example.

38.3.4. Monitoring Client Read-Write Extent Statistics

For in-depth troubleshooting, client read-write extent statistics can be accessed to
 obtain more detail about read/write I/O extents for the file system or for a particular
 process.
Note
By default, statistics are not collected in the offset_stats,
 extents_stats, and extents_stats_per_process files
 to reduce monitoring overhead when this information is not needed. The collection of
 statistics in all three of these files is activated by writing
 anything, except for 0 (zero) and "disable", into any one of the
 files.

38.3.4.1. Client-Based I/O Extent Size Survey

The extents_stats histogram in the
 llite directory shows the statistics for the sizes
 of the read/write I/O extents. This file does not maintain the per
 process statistics.
Example:
lctl get_param llite.testfs-*.extents_stats
snapshot_time: 1213828728.348516 (secs.usecs)
 read | write
extents calls % cum% | calls % cum%

0K - 4K : 0 0 0 | 2 2 2
4K - 8K : 0 0 0 | 0 0 2
8K - 16K : 0 0 0 | 0 0 2
16K - 32K : 0 0 0 | 20 23 26
32K - 64K : 0 0 0 | 0 0 26
64K - 128K : 0 0 0 | 51 60 86
128K - 256K : 0 0 0 | 0 0 86
256K - 512K : 0 0 0 | 0 0 86
512K - 1024K : 0 0 0 | 0 0 86
1M - 2M : 0 0 0 | 11 13 100
In this example, snapshot_time is the UNIX epoch instant the file
 was read. The table shows cumulative extents organized according to size with statistics
 provided separately for reads and writes. Each row in the table shows the number of RPCs
 for reads and writes respectively (calls), the relative percentage of
 total calls (%), and the cumulative percentage to
 that point in the table of calls (cum %).
 The file can be cleared by issuing the following command:

lctl set_param llite.testfs-*.extents_stats=1

38.3.4.2. Per-Process Client I/O Statistics

The extents_stats_per_process file maintains the I/O extent size
 statistics on a per-process basis.
Example:
lctl get_param llite.testfs-*.extents_stats_per_process
snapshot_time: 1213828762.204440 (secs.usecs)
 read | write
extents calls % cum% | calls % cum%

PID: 11488
 0K - 4K : 0 0 0 | 0 0 0
 4K - 8K : 0 0 0 | 0 0 0
 8K - 16K : 0 0 0 | 0 0 0
 16K - 32K : 0 0 0 | 0 0 0
 32K - 64K : 0 0 0 | 0 0 0
 64K - 128K : 0 0 0 | 0 0 0
 128K - 256K : 0 0 0 | 0 0 0
 256K - 512K : 0 0 0 | 0 0 0
 512K - 1024K : 0 0 0 | 0 0 0
 1M - 2M : 0 0 0 | 10 100 100

PID: 11491
 0K - 4K : 0 0 0 | 0 0 0
 4K - 8K : 0 0 0 | 0 0 0
 8K - 16K : 0 0 0 | 0 0 0
 16K - 32K : 0 0 0 | 20 100 100

PID: 11424
 0K - 4K : 0 0 0 | 0 0 0
 4K - 8K : 0 0 0 | 0 0 0
 8K - 16K : 0 0 0 | 0 0 0
 16K - 32K : 0 0 0 | 0 0 0
 32K - 64K : 0 0 0 | 0 0 0
 64K - 128K : 0 0 0 | 16 100 100

PID: 11426
 0K - 4K : 0 0 0 | 1 100 100

PID: 11429
 0K - 4K : 0 0 0 | 1 100 100

This table shows cumulative extents organized according to size for each process ID
 (PID) with statistics provided separately for reads and writes. Each row in the table
 shows the number of RPCs for reads and writes respectively (calls), the
 relative percentage of total calls (%), and the cumulative percentage
 to that point in the table of calls (cum %).

38.3.5. Monitoring the OST Block I/O Stream

The brw_stats file in the obdfilter directory
 contains histogram data showing statistics for number of I/O requests sent to the disk,
 their size, and whether they are contiguous on the disk or not.
Example:
Enter on the OSS:
lctl get_param obdfilter.testfs-OST0000.brw_stats
snapshot_time: 1372775039.769045 (secs.usecs)
 read | write
pages per bulk r/w rpcs % cum % | rpcs % cum %
1: 108 100 100 | 39 0 0
2: 0 0 100 | 6 0 0
4: 0 0 100 | 1 0 0
8: 0 0 100 | 0 0 0
16: 0 0 100 | 4 0 0
32: 0 0 100 | 17 0 0
64: 0 0 100 | 12 0 0
128: 0 0 100 | 24 0 0
256: 0 0 100 | 23142 99 100

 read | write
discontiguous pages rpcs % cum % | rpcs % cum %
0: 108 100 100 | 23245 100 100

 read | write
discontiguous blocks rpcs % cum % | rpcs % cum %
0: 108 100 100 | 23243 99 99
1: 0 0 100 | 2 0 100

 read | write
disk fragmented I/Os ios % cum % | ios % cum %
0: 94 87 87 | 0 0 0
1: 14 12 100 | 23243 99 99
2: 0 0 100 | 2 0 100

 read | write
disk I/Os in flight ios % cum % | ios % cum %
1: 14 100 100 | 20896 89 89
2: 0 0 100 | 1071 4 94
3: 0 0 100 | 573 2 96
4: 0 0 100 | 300 1 98
5: 0 0 100 | 166 0 98
6: 0 0 100 | 108 0 99
7: 0 0 100 | 81 0 99
8: 0 0 100 | 47 0 99
9: 0 0 100 | 5 0 100

 read | write
I/O time (1/1000s) ios % cum % | ios % cum %
1: 94 87 87 | 0 0 0
2: 0 0 87 | 7 0 0
4: 14 12 100 | 27 0 0
8: 0 0 100 | 14 0 0
16: 0 0 100 | 31 0 0
32: 0 0 100 | 38 0 0
64: 0 0 100 | 18979 81 82
128: 0 0 100 | 943 4 86
256: 0 0 100 | 1233 5 91
512: 0 0 100 | 1825 7 99
1K: 0 0 100 | 99 0 99
2K: 0 0 100 | 0 0 99
4K: 0 0 100 | 0 0 99
8K: 0 0 100 | 49 0 100

 read | write
disk I/O size ios % cum % | ios % cum %
4K: 14 100 100 | 41 0 0
8K: 0 0 100 | 6 0 0
16K: 0 0 100 | 1 0 0
32K: 0 0 100 | 0 0 0
64K: 0 0 100 | 4 0 0
128K: 0 0 100 | 17 0 0
256K: 0 0 100 | 12 0 0
512K: 0 0 100 | 24 0 0
1M: 0 0 100 | 23142 99 100

The tabular data is described in the table below. Each row in the table shows the number
 of reads and writes occurring for the statistic (ios), the relative
 percentage of total reads or writes (%), and the cumulative percentage to
 that point in the table for the statistic (cum %).
	
 Field

 	
 Description

	

 pages per bulk r/w

 	
 Number of pages per RPC request, which should match aggregate client
 rpc_stats (see Section 38.3.1, “Monitoring the Client RPC Stream”).

	

 discontiguous pages

 	
 Number of discontinuities in the logical file offset of each page in a single
 RPC.

	

 discontiguous blocks

 	
 Number of discontinuities in the physical block allocation in the file system
 for a single RPC.

	
 disk fragmented I/Os

 	
 Number of I/Os that were not written entirely sequentially.

	
 disk I/Os in flight

 	
 Number of disk I/Os currently pending.

	
 I/O time (1/1000s)

 	
 Amount of time for each I/O operation to complete.

	
 disk I/O size

 	
 Size of each I/O operation.

Analysis:
This data provides an indication of extent size and distribution in the file
 system.

38.4. Tuning Lustre File System I/O

Each OSC has its own tree of tunables. For example:
$ lctl lctl list_param osc.*.*
osc.myth-OST0000-osc-ffff8804296c2800.active
osc.myth-OST0000-osc-ffff8804296c2800.blocksize
osc.myth-OST0000-osc-ffff8804296c2800.checksum_dump
osc.myth-OST0000-osc-ffff8804296c2800.checksum_type
osc.myth-OST0000-osc-ffff8804296c2800.checksums
osc.myth-OST0000-osc-ffff8804296c2800.connect_flags
:
:
osc.myth-OST0000-osc-ffff8804296c2800.state
osc.myth-OST0000-osc-ffff8804296c2800.stats
osc.myth-OST0000-osc-ffff8804296c2800.timeouts
osc.myth-OST0000-osc-ffff8804296c2800.unstable_stats
osc.myth-OST0000-osc-ffff8804296c2800.uuid
osc.myth-OST0001-osc-ffff8804296c2800.active
osc.myth-OST0001-osc-ffff8804296c2800.blocksize
osc.myth-OST0001-osc-ffff8804296c2800.checksum_dump
osc.myth-OST0001-osc-ffff8804296c2800.checksum_type
:
:

The following sections describe some of the parameters that can
 be tuned in a Lustre file system.
38.4.1. Tuning the Client I/O RPC Stream

Ideally, an optimal amount of data is packed into each I/O RPC
 and a consistent number of issued RPCs are in progress at any time.
 To help optimize the client I/O RPC stream, several tuning variables
 are provided to adjust behavior according to network conditions and
 cluster size. For information about monitoring the client I/O RPC
 stream, see Section 38.3.1, “Monitoring the Client RPC Stream”.
RPC stream tunables include:

	osc.osc_instance.checksums
 - Controls whether the client will calculate data integrity
 checksums for the bulk data transferred to the OST. Data
 integrity checksums are enabled by default. The algorithm used
 can be set using the checksum_type parameter.

	osc.osc_instance.checksum_type
 - Controls the data integrity checksum algorithm used by the
 client. The available algorithms are determined by the set of
 algorihtms. The checksum algorithm used by default is determined
 by first selecting the fastest algorithms available on the OST,
 and then selecting the fastest of those algorithms on the client,
 which depends on available optimizations in the CPU hardware and
 kernel. The default algorithm can be overridden by writing the
 algorithm name into the checksum_type
 parameter. Available checksum types can be seen on the client by
 reading the checksum_type parameter. Currently
 supported checksum types are:
 adler,
 crc32,
 crc32c

Introduced in Lustre 2.12
 In Lustre release 2.12 additional checksum types were added to
 allow end-to-end checksum integration with T10-PI capable
 hardware. The client will compute the appropriate checksum
 type, based on the checksum type used by the storage, for the
 RPC checksum, which will be verified by the server and passed
 on to the storage. The T10-PI checksum types are:
 t10ip512,
 t10ip4K,
 t10crc512,
 t10crc4K

	osc.osc_instance.max_dirty_mb
 - Controls how many MiB of dirty data can be written into the
 client pagecache for writes by each OSC.
 When this limit is reached, additional writes block until
 previously-cached data is written to the server. This may be
 changed by the lctl set_param command. Only
 values larger than 0 and smaller than the lesser of 2048 MiB or
 1/4 of client RAM are valid. Performance can suffers if the
 client cannot aggregate enough data per OSC to form a full RPC
 (as set by the max_pages_per_rpc) parameter,
 unless the application is doing very large writes itself.

To maximize performance, the value for
 max_dirty_mb is recommended to be at least
 4 * max_pages_per_rpc *
 max_rpcs_in_flight.

	osc.osc_instance.cur_dirty_bytes
 - A read-only value that returns the current number of bytes
 written and cached by this OSC.

	osc.osc_instance.max_pages_per_rpc
 - The maximum number of pages that will be sent in a single RPC
 request to the OST. The minimum value is one page and the maximum
 value is 16 MiB (4096 on systems with PAGE_SIZE
 of 4 KiB), with the default value of 4 MiB in one RPC. The upper
 limit may also be constrained by ofd.*.brw_size
 setting on the OSS, and applies to all clients connected to that
 OST. It is also possible to specify a units suffix (e.g.
 max_pages_per_rpc=4M), so the RPC size can be
 set independently of the client PAGE_SIZE.

	osc.osc_instance.max_rpcs_in_flight
 - The maximum number of concurrent RPCs in flight from an OSC to
 its OST. If the OSC tries to initiate an RPC but finds that it
 already has the same number of RPCs outstanding, it will wait to
 issue further RPCs until some complete. The minimum setting is 1
 and maximum setting is 256. The default value is 8 RPCs.

To improve small file I/O performance, increase the
 max_rpcs_in_flight value.

	llite.fsname_instance.max_cache_mb
 - Maximum amount of inactive data cached by the client. The
 default value is 3/4 of the client RAM.

Note
The value for osc_instance
 and fsname_instance
 are unique to each mount point to allow associating osc, mdc, lov,
 lmv, and llite parameters with the same mount point. However, it is
 common for scripts to use a wildcard * or a
 filesystem-specific wildcard
 fsname-* to specify
 the parameter settings uniformly on all clients. For example:

client$ lctl get_param osc.testfs-OST0000*.rpc_stats
osc.testfs-OST0000-osc-ffff88107412f400.rpc_stats=
snapshot_time: 1375743284.337839 (secs.usecs)
read RPCs in flight: 0
write RPCs in flight: 0

38.4.2. Tuning File Readahead and Directory Statahead

File readahead and directory statahead enable reading of data
 into memory before a process requests the data. File readahead prefetches
 file content data into memory for read() related
 calls, while directory statahead fetches file metadata into memory for
 readdir() and stat() related
 calls. When readahead and statahead work well, a process that accesses
 data finds that the information it needs is available immediately in
 memory on the client when requested without the delay of network I/O.

38.4.2.1. Tuning File Readahead

File readahead is triggered when two or more sequential reads
 by an application fail to be satisfied by data in the Linux buffer
 cache. The size of the initial readahead is determined by the RPC
 size and the file stripe size, but will typically be at least 1 MiB.
 Additional readaheads grow linearly and increment until the per-file
 or per-system readahead cache limit on the client is reached.
Readahead tunables include:
	llite.fsname_instance.max_read_ahead_mb
 - Controls the maximum amount of data readahead on a file.
 Files are read ahead in RPC-sized chunks (4 MiB, or the size of
 the read() call, if larger) after the second
 sequential read on a file descriptor. Random reads are done at
 the size of the read() call only (no
 readahead). Reads to non-contiguous regions of the file reset
 the readahead algorithm, and readahead is not triggered until
 sequential reads take place again.

 This is the global limit for all files and cannot be larger than
 1/2 of the client RAM. To disable readahead, set
 max_read_ahead_mb=0.

	llite.fsname_instance.max_read_ahead_per_file_mb
 - Controls the maximum number of megabytes (MiB) of data that
 should be prefetched by the client when sequential reads are
 detected on a file. This is the per-file readahead limit and
 cannot be larger than max_read_ahead_mb.

	llite.fsname_instance.max_read_ahead_whole_mb
 - Controls the maximum size of a file in MiB that is read in its
 entirety upon access, regardless of the size of the
 read() call. This avoids multiple small read
 RPCs on relatively small files, when it is not possible to
 efficiently detect a sequential read pattern before the whole
 file has been read.

The default value is the greater of 2 MiB or the size of one
 RPC, as given by max_pages_per_rpc.

38.4.2.2. Tuning Directory Statahead and AGL

Many system commands, such as ls –l,
 du, and find, traverse a
 directory sequentially. To make these commands run efficiently, the
 directory statahead can be enabled to improve the performance of
 directory traversal.
The statahead tunables are:
	statahead_max -
 Controls the maximum number of file attributes that will be
 prefetched by the statahead thread. By default, statahead is
 enabled and statahead_max is 32 files.
To disable statahead, set statahead_max
 to zero via the following command on the client:
lctl set_param llite.*.statahead_max=0
To change the maximum statahead window size on a client:
lctl set_param llite.*.statahead_max=n
The maximum statahead_max is 8192 files.

The directory statahead thread will also prefetch the file
 size/block attributes from the OSTs, so that all file attributes
 are available on the client when requested by an application.
 This is controlled by the asynchronous glimpse lock (AGL) setting.
 The AGL behaviour can be disabled by setting:
lctl set_param llite.*.statahead_agl=0

	statahead_stats -
 A read-only interface that provides current statahead and AGL
 statistics, such as how many times statahead/AGL has been triggered
 since the last mount, how many statahead/AGL failures have occurred
 due to an incorrect prediction or other causes.
Note
AGL behaviour is affected by statahead since the inodes
 processed by AGL are built by the statahead thread. If
 statahead is disabled, then AGL is also disabled.

38.4.3. Tuning OSS Read Cache

The OSS read cache feature provides read-only caching of data on an OSS. This
 functionality uses the Linux page cache to store the data and uses as much physical memory
 as is allocated.
OSS read cache improves Lustre file system performance in these situations:
	Many clients are accessing the same data set (as in HPC applications or when
 diskless clients boot from the Lustre file system).

	One client is storing data while another client is reading it (i.e., clients are
 exchanging data via the OST).

	A client has very limited caching of its own.

OSS read cache offers these benefits:
	Allows OSTs to cache read data more frequently.

	Improves repeated reads to match network speeds instead of disk speeds.

	Provides the building blocks for OST write cache (small-write aggregation).

38.4.3.1. Using OSS Read Cache

OSS read cache is implemented on the OSS, and does not require any special support on
 the client side. Since OSS read cache uses the memory available in the Linux page cache,
 the appropriate amount of memory for the cache should be determined based on I/O patterns;
 if the data is mostly reads, then more cache is required than would be needed for mostly
 writes.
OSS read cache is managed using the following tunables:
	read_cache_enable - Controls whether data read from disk during
 a read request is kept in memory and available for later read requests for the same
 data, without having to re-read it from disk. By default, read cache is enabled
 (read_cache_enable=1).
When the OSS receives a read request from a client, it reads data from disk into
 its memory and sends the data as a reply to the request. If read cache is enabled,
 this data stays in memory after the request from the client has been fulfilled. When
 subsequent read requests for the same data are received, the OSS skips reading data
 from disk and the request is fulfilled from the cached data. The read cache is managed
 by the Linux kernel globally across all OSTs on that OSS so that the least recently
 used cache pages are dropped from memory when the amount of free memory is running
 low.
If read cache is disabled (read_cache_enable=0), the OSS
 discards the data after a read request from the client is serviced and, for subsequent
 read requests, the OSS again reads the data from disk.
To disable read cache on all the OSTs of an OSS, run:
root@oss1# lctl set_param obdfilter.*.read_cache_enable=0
To re-enable read cache on one OST, run:
root@oss1# lctl set_param obdfilter.{OST_name}.read_cache_enable=1
To check if read cache is enabled on all OSTs on an OSS, run:
root@oss1# lctl get_param obdfilter.*.read_cache_enable

	writethrough_cache_enable - Controls whether data sent to the
 OSS as a write request is kept in the read cache and available for later reads, or if
 it is discarded from cache when the write is completed. By default, the writethrough
 cache is enabled (writethrough_cache_enable=1).
When the OSS receives write requests from a client, it receives data from the
 client into its memory and writes the data to disk. If the writethrough cache is
 enabled, this data stays in memory after the write request is completed, allowing the
 OSS to skip reading this data from disk if a later read request, or partial-page write
 request, for the same data is received.
If the writethrough cache is disabled
 (writethrough_cache_enabled=0), the OSS discards the data after
 the write request from the client is completed. For subsequent read requests, or
 partial-page write requests, the OSS must re-read the data from disk.
Enabling writethrough cache is advisable if clients are doing small or unaligned
 writes that would cause partial-page updates, or if the files written by one node are
 immediately being accessed by other nodes. Some examples where enabling writethrough
 cache might be useful include producer-consumer I/O models or shared-file writes with
 a different node doing I/O not aligned on 4096-byte boundaries.
Disabling the writethrough cache is advisable when files are mostly written to the
 file system but are not re-read within a short time period, or files are only written
 and re-read by the same node, regardless of whether the I/O is aligned or not.
To disable the writethrough cache on all OSTs of an OSS, run:
root@oss1# lctl set_param obdfilter.*.writethrough_cache_enable=0
To re-enable the writethrough cache on one OST, run:
root@oss1# lctl set_param obdfilter.{OST_name}.writethrough_cache_enable=1
To check if the writethrough cache is enabled, run:
root@oss1# lctl get_param obdfilter.*.writethrough_cache_enable

	readcache_max_filesize - Controls the maximum size of a file
 that both the read cache and writethrough cache will try to keep in memory. Files
 larger than readcache_max_filesize will not be kept in cache for
 either reads or writes.
Setting this tunable can be useful for workloads where relatively small files are
 repeatedly accessed by many clients, such as job startup files, executables, log
 files, etc., but large files are read or written only once. By not putting the larger
 files into the cache, it is much more likely that more of the smaller files will
 remain in cache for a longer time.
When setting readcache_max_filesize, the input value can be
 specified in bytes, or can have a suffix to indicate other binary units such as
 K (kilobytes), M (megabytes),
 G (gigabytes), T (terabytes), or
 P (petabytes).
To limit the maximum cached file size to 32 MB on all OSTs of an OSS, run:
root@oss1# lctl set_param obdfilter.*.readcache_max_filesize=32M
To disable the maximum cached file size on an OST, run:
root@oss1# lctl set_param obdfilter.{OST_name}.readcache_max_filesize=-1
To check the current maximum cached file size on all OSTs of an OSS, run:
root@oss1# lctl get_param obdfilter.*.readcache_max_filesize

38.4.4. Enabling OSS Asynchronous Journal Commit

The OSS asynchronous journal commit feature asynchronously writes data to disk without
 forcing a journal flush. This reduces the number of seeks and significantly improves
 performance on some hardware.
Note
Asynchronous journal commit cannot work with direct I/O-originated writes
 (O_DIRECT flag set). In this case, a journal flush is forced.

When the asynchronous journal commit feature is enabled, client nodes keep data in the
 page cache (a page reference). Lustre clients monitor the last committed transaction number
 (transno) in messages sent from the OSS to the clients. When a client
 sees that the last committed transno reported by the OSS is at least
 equal to the bulk write transno, it releases the reference on the
 corresponding pages. To avoid page references being held for too long on clients after a
 bulk write, a 7 second ping request is scheduled (the default OSS file system commit time
 interval is 5 seconds) after the bulk write reply is received, so the OSS has an opportunity
 to report the last committed transno.
If the OSS crashes before the journal commit occurs, then intermediate data is lost.
 However, OSS recovery functionality incorporated into the asynchronous journal commit
 feature causes clients to replay their write requests and compensate for the missing disk
 updates by restoring the state of the file system.
By default, sync_journal is enabled
 (sync_journal=1), so that journal entries are committed synchronously.
 To enable asynchronous journal commit, set the sync_journal parameter to
 0 by entering:
$ lctl set_param obdfilter.*.sync_journal=0
obdfilter.lol-OST0001.sync_journal=0
An associated sync-on-lock-cancel feature (enabled by default)
 addresses a data consistency issue that can result if an OSS crashes after multiple clients
 have written data into intersecting regions of an object, and then one of the clients also
 crashes. A condition is created in which the POSIX requirement for continuous writes is
 violated along with a potential for corrupted data. With
 sync-on-lock-cancel enabled, if a cancelled lock has any volatile
 writes attached to it, the OSS synchronously writes the journal to disk on lock
 cancellation. Disabling the sync-on-lock-cancel feature may enhance
 performance for concurrent write workloads, but it is recommended that you not disable this
 feature.
 The sync_on_lock_cancel parameter can be set to the following
 values:
	always - Always force a journal flush on lock cancellation
 (default when async_journal is enabled).

	blocking - Force a journal flush only when the local cancellation
 is due to a blocking callback.

	never - Do not force any journal flush (default when
 async_journal is disabled).

For example, to set sync_on_lock_cancel to not to force a journal
 flush, use a command similar to:
$ lctl get_param obdfilter.*.sync_on_lock_cancel
obdfilter.lol-OST0001.sync_on_lock_cancel=never

Introduced in Lustre 2.838.4.5.

 Tuning the Client Metadata RPC Stream

The client metadata RPC stream represents the metadata RPCs issued
 in parallel by a client to a MDT target. The metadata RPCs can be split
 in two categories: the requests that do not modify the file system
 (like getattr operation), and the requests that do modify the file system
 (like create, unlink, setattr operations). To help optimize the client
 metadata RPC stream, several tuning variables are provided to adjust
 behavior according to network conditions and cluster size.
Note that increasing the number of metadata RPCs issued in parallel
 might improve the performance metadata intensive parallel applications,
 but as a consequence it will consume more memory on the client and on
 the MDS.
38.4.5.1. Configuring the Client Metadata RPC Stream

The MDC max_rpcs_in_flight parameter defines
 the maximum number of metadata RPCs, both modifying and
 non-modifying RPCs, that can be sent in parallel by a client to a MDT
 target. This includes every file system metadata operations, such as
 file or directory stat, creation, unlink. The default setting is 8,
 minimum setting is 1 and maximum setting is 256.
To set the max_rpcs_in_flight parameter, run
 the following command on the Lustre client:
client$ lctl set_param mdc.*.max_rpcs_in_flight=16
The MDC max_mod_rpcs_in_flight parameter
 defines the maximum number of file system modifying RPCs that can be
 sent in parallel by a client to a MDT target. For example, the Lustre
 client sends modify RPCs when it performs file or directory creation,
 unlink, access permission modification or ownership modification. The
 default setting is 7, minimum setting is 1 and maximum setting is
 256.
To set the max_mod_rpcs_in_flight parameter,
 run the following command on the Lustre client:
client$ lctl set_param mdc.*.max_mod_rpcs_in_flight=12
The max_mod_rpcs_in_flight value must be
 strictly less than the max_rpcs_in_flight value.
 It must also be less or equal to the MDT
 max_mod_rpcs_per_client value. If one of theses
 conditions is not enforced, the setting fails and an explicit message
 is written in the Lustre log.
The MDT max_mod_rpcs_per_client parameter is a
 tunable of the kernel module mdt that defines the
 maximum number of file system modifying RPCs in flight allowed per
 client. The parameter can be updated at runtime, but the change is
 effective to new client connections only. The default setting is 8.

To set the max_mod_rpcs_per_client parameter,
 run the following command on the MDS:
mds$ echo 12 > /sys/module/mdt/parameters/max_mod_rpcs_per_client

38.4.5.2. Monitoring the Client Metadata RPC Stream

The rpc_stats file contains histogram data
 showing information about modify metadata RPCs. It can be helpful to
 identify the level of parallelism achieved by an application doing
 modify metadata operations.
Example:
client$ lctl get_param mdc.*.rpc_stats
snapshot_time: 1441876896.567070 (secs.usecs)
modify_RPCs_in_flight: 0

 modify
rpcs in flight rpcs % cum %
0: 0 0 0
1: 56 0 0
2: 40 0 0
3: 70 0 0
4 41 0 0
5: 51 0 1
6: 88 0 1
7: 366 1 2
8: 1321 5 8
9: 3624 15 23
10: 6482 27 50
11: 7321 30 81
12: 4540 18 100
The file information includes:
	snapshot_time - UNIX epoch instant the
 file was read.

	modify_RPCs_in_flight - Number of modify
 RPCs issued by the MDC, but not completed at the time of the
 snapshot. This value should always be less than or equal to
 max_mod_rpcs_in_flight.

	rpcs in flight - Number of modify RPCs
 that are pending when a RPC is sent, the relative percentage
 (%) of total modify RPCs, and the cumulative
 percentage (cum %) to that point.

If a large proportion of modify metadata RPCs are issued with a
 number of pending metadata RPCs close to the
 max_mod_rpcs_in_flight value, it means the
 max_mod_rpcs_in_flight value could be increased to
 improve the modify metadata performance.

38.5. Configuring Timeouts in a Lustre File System

In a Lustre file system, RPC timeouts are set using an adaptive timeouts mechanism, which
 is enabled by default. Servers track RPC completion times and then report back to clients
 estimates for completion times for future RPCs. Clients use these estimates to set RPC
 timeout values. If the processing of server requests slows down for any reason, the server
 estimates for RPC completion increase, and clients then revise RPC timeout values to allow
 more time for RPC completion.
If the RPCs queued on the server approach the RPC timeout specified by the client, to
 avoid RPC timeouts and disconnect/reconnect cycles, the server sends an "early reply" to the
 client, telling the client to allow more time. Conversely, as server processing speeds up, RPC
 timeout values decrease, resulting in faster detection if the server becomes non-responsive
 and quicker connection to the failover partner of the server.
38.5.1. Configuring Adaptive Timeouts

The adaptive timeout parameters in the table below can be set persistently system-wide
 using lctl conf_param on the MGS. For example, the following command sets
 the at_max value for all servers and clients associated with the file
 system
 testfs:
lctl conf_param testfs.sys.at_max=1500
Note
Clients that access multiple Lustre file systems must use the same parameter values
 for all file systems.

	
 Parameter

 	
 Description

	

 at_min

 	
 Minimum adaptive timeout (in seconds). The default value is 0. The
 at_min parameter is the minimum processing time that a server
 will report. Ideally, at_min should be set to its default
 value. Clients base their timeouts on this value, but they do not use this value
 directly.

 If, for unknown reasons (usually due to temporary network outages), the
 adaptive timeout value is too short and clients time out their RPCs, you can
 increase the at_min value to compensate for this.

	

 at_max

 	
 Maximum adaptive timeout (in seconds). The at_max parameter
 is an upper-limit on the service time estimate. If at_max is
 reached, an RPC request times out.

 Setting at_max to 0 causes adaptive timeouts to be disabled
 and a fixed timeout method to be used instead (see Section 38.5.2, “Setting Static Timeouts”

 Note
If slow hardware causes the service estimate to increase beyond the default
 value of at_max, increase at_max to the
 maximum time you are willing to wait for an RPC completion.

	

 at_history

 	
 Time period (in seconds) within which adaptive timeouts remember the slowest
 event that occurred. The default is 600.

	

 at_early_margin

 	
 Amount of time before the Lustre server sends an early reply (in seconds).
 Default is 5.

	

 at_extra

 	
 Incremental amount of time that a server requests with each early reply (in
 seconds). The server does not know how much time the RPC will take, so it asks for
 a fixed value. The default is 30, which provides a balance between sending too
 many early replies for the same RPC and overestimating the actual completion
 time.

 When a server finds a queued request about to time out and needs to send an
 early reply out, the server adds the at_extra value. If the
 time expires, the Lustre server drops the request, and the client enters recovery
 status and reconnects to restore the connection to normal status.

 If you see multiple early replies for the same RPC asking for 30-second
 increases, change the at_extra value to a larger number to cut
 down on early replies sent and, therefore, network load.

	

 ldlm_enqueue_min

 	
 Minimum lock enqueue time (in seconds). The default is 100. The time it takes
 to enqueue a lock, ldlm_enqueue, is the maximum of the measured
 enqueue estimate (influenced by at_min and
 at_max parameters), multiplied by a weighting factor and the
 value of ldlm_enqueue_min.

 Lustre Distributed Lock Manager (LDLM) lock enqueues have a dedicated minimum
 value for ldlm_enqueue_min. Lock enqueue timeouts increase as
 the measured enqueue times increase (similar to adaptive timeouts).

38.5.1.1. Interpreting Adaptive Timeout Information

Adaptive timeout information can be obtained via
 lctl get_param {osc,mdc}.*.timeouts files on each
 client and lctl get_param {ost,mds}.*.*.timeouts
 on each server. To read information from a
 timeouts file, enter a command similar to:
lctl get_param -n ost.*.ost_io.timeouts
service : cur 33 worst 34 (at 1193427052, 1600s ago) 1 1 33 2
In this example, the ost_io service on this
 node is currently reporting an estimated RPC service time of 33
 seconds. The worst RPC service time was 34 seconds, which occurred
 26 minutes ago.
The output also provides a history of service times.
 Four "bins" of adaptive timeout history are shown, with the
 maximum RPC time in each bin reported. In both the 0-150s bin and the
 150-300s bin, the maximum RPC time was 1. The 300-450s bin shows the
 worst (maximum) RPC time at 33 seconds, and the 450-600s bin shows a
 maximum of RPC time of 2 seconds. The estimated service time is the
 maximum value in the four bins (33 seconds in this example).
Service times (as reported by the servers) are also tracked in
 the client OBDs, as shown in this example:
lctl get_param osc.*.timeouts
last reply : 1193428639, 0d0h00m00s ago
network : cur 1 worst 2 (at 1193427053, 0d0h26m26s ago) 1 1 1 1
portal 6 : cur 33 worst 34 (at 1193427052, 0d0h26m27s ago) 33 33 33 2
portal 28 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 1 1 1
portal 7 : cur 1 worst 1 (at 1193426141, 0d0h41m38s ago) 1 0 1 1
portal 17 : cur 1 worst 1 (at 1193426177, 0d0h41m02s ago) 1 0 0 1

In this example, portal 6, the ost_io service
 portal, shows the history of service estimates reported by the portal.

Server statistic files also show the range of estimates including
 min, max, sum, and sum-squared. For example:
lctl get_param mdt.*.mdt.stats
...
req_timeout 6 samples [sec] 1 10 15 105
...

38.5.2. Setting Static Timeouts

The Lustre software provides two sets of static (fixed) timeouts, LND timeouts and
 Lustre timeouts, which are used when adaptive timeouts are not enabled.

	LND timeouts -
 LND timeouts ensure that point-to-point communications across a network complete in a
 finite time in the presence of failures, such as packages lost or broken connections.
 LND timeout parameters are set for each individual LND.
LND timeouts are logged with the S_LND flag set. They are not
 printed as console messages, so check the Lustre log for D_NETERROR
 messages or enable printing of D_NETERROR messages to the console
 using:
lctl set_param printk=+neterror
Congested routers can be a source of spurious LND timeouts. To avoid this
 situation, increase the number of LNet router buffers to reduce back-pressure and/or
 increase LND timeouts on all nodes on all connected networks. Also consider increasing
 the total number of LNet router nodes in the system so that the aggregate router
 bandwidth matches the aggregate server bandwidth.

	Lustre timeouts
 - Lustre timeouts ensure that Lustre RPCs complete in a finite
 time in the presence of failures when adaptive timeouts are not enabled. Adaptive
 timeouts are enabled by default. To disable adaptive timeouts at run time, set
 at_max to 0 by running on the
 MGS:
lctl conf_param fsname.sys.at_max=0
Note
Changing the status of adaptive timeouts at runtime may cause a transient client
 timeout, recovery, and reconnection.

Lustre timeouts are always printed as console messages.
If Lustre timeouts are not accompanied by LND timeouts, increase the Lustre
 timeout on both servers and clients. Lustre timeouts are set using a command such as
 the following:
lctl set_param timeout=30
Lustre timeout parameters are described in the table below.

	Parameter	Description
	timeout	
 The time that a client waits for a server to complete an RPC (default 100s).
 Servers wait half this time for a normal client RPC to complete and a quarter of
 this time for a single bulk request (read or write of up to 4 MB) to complete.
 The client pings recoverable targets (MDS and OSTs) at one quarter of the
 timeout, and the server waits one and a half times the timeout before evicting a
 client for being "stale."

 Lustre client sends periodic 'ping' messages to servers with which
 it has had no communication for the specified period of time. Any network
 activity between a client and a server in the file system also serves as a
 ping.

	ldlm_timeout	
 The time that a server waits for a client to reply to an initial AST (lock
 cancellation request). The default is 20s for an OST and 6s for an MDS. If the
 client replies to the AST, the server will give it a normal timeout (half the
 client timeout) to flush any dirty data and release the lock.

	fail_loc	
 An internal debugging failure hook. The default value of
 0 means that no failure will be triggered or
 injected.

	dump_on_timeout	
 Triggers a dump of the Lustre debug log when a timeout occurs. The default
 value of 0 (zero) means a dump of the Lustre debug log will
 not be triggered.

	dump_on_eviction	
 Triggers a dump of the Lustre debug log when an eviction occurs. The default
 value of 0 (zero) means a dump of the Lustre debug log will
 not be triggered.

38.6. Monitoring LNet

LNet information is located via lctl get_param
 in these parameters:

	peers - Shows all NIDs known to this node
 and provides information on the queue state.
Example:
lctl get_param peers
nid refs state max rtr min tx min queue
0@lo 1 ~rtr 0 0 0 0 0 0
192.168.10.35@tcp 1 ~rtr 8 8 8 8 6 0
192.168.10.36@tcp 1 ~rtr 8 8 8 8 6 0
192.168.10.37@tcp 1 ~rtr 8 8 8 8 6 0
The fields are explained in the table below:
	
 Field

 	
 Description

	

 refs

 	
 A reference count.

	

 state

 	
 If the node is a router, indicates the state of the router. Possible
 values are:

 	NA - Indicates the node is not a router.

	up/down- Indicates if the node (router) is up or
 down.

	

 max

 	
 Maximum number of concurrent sends from this peer.

	

 rtr

 	
 Number of routing buffer credits.

	

 min

 	
 Minimum number of routing buffer credits seen.

	

 tx

 	
 Number of send credits.

	

 min

 	
 Minimum number of send credits seen.

	

 queue

 	
 Total bytes in active/queued sends.

Credits are initialized to allow a certain number of operations (in the example
 above the table, eight as shown in the max column. LNet keeps track
 of the minimum number of credits ever seen over time showing the peak congestion that
 has occurred during the time monitored. Fewer available credits indicates a more
 congested resource.
The number of credits currently in flight (number of transmit credits) is shown in
 the tx column. The maximum number of send credits available is shown
 in the max column and never changes. The number of router buffers
 available for consumption by a peer is shown in the rtr
 column.
Therefore, rtr – tx is the number of transmits
 in flight. Typically, rtr == max, although a configuration can be set
 such that max >= rtr. The ratio of routing buffer credits to send
 credits (rtr/tx) that is less than max indicates
 operations are in progress. If the ratio rtr/tx is greater than
 max, operations are blocking.
LNet also limits concurrent sends and number of router buffers allocated to a single
 peer so that no peer can occupy all these resources.

	nis - Shows the current queue health on this node.
Example:
lctl get_param nis
nid refs peer max tx min
0@lo 3 0 0 0 0
192.168.10.34@tcp 4 8 256 256 252

 The fields are explained in the table below.
	
 Field

 	
 Description

	

 nid

 	
 Network interface.

	

 refs

 	
 Internal reference counter.

	

 peer

 	
 Number of peer-to-peer send credits on this NID. Credits are used to size
 buffer pools.

	

 max

 	
 Total number of send credits on this NID.

	

 tx

 	
 Current number of send credits available on this NID.

	

 min

 	
 Lowest number of send credits available on this NID.

	

 queue

 	
 Total bytes in active/queued sends.

Analysis:
Subtracting max from tx
 (max - tx) yields the number of sends currently
 active. A large or increasing number of active sends may indicate a problem.

38.7. Allocating Free Space on OSTs

Free space is allocated using either a round-robin or a weighted
 algorithm. The allocation method is determined by the maximum amount of
 free-space imbalance between the OSTs. When free space is relatively
 balanced across OSTs, the faster round-robin allocator is used, which
 maximizes network balancing. The weighted allocator is used when any two
 OSTs are out of balance by more than a specified threshold.
Free space distribution can be tuned using these two
 tunable parameters:
	lod.*.qos_threshold_rr - The threshold at which
 the allocation method switches from round-robin to weighted is set
 in this file. The default is to switch to the weighted algorithm when
 any two OSTs are out of balance by more than 17 percent.

	lod.*.qos_prio_free - The weighting priority
 used by the weighted allocator can be adjusted in this file. Increasing
 the value of qos_prio_free puts more weighting on the
 amount of free space available on each OST and less on how stripes are
 distributed across OSTs. The default value is 91 percent weighting for
 free space rebalancing and 9 percent for OST balancing. When the
 free space priority is set to 100, weighting is based entirely on free
 space and location is no longer used by the striping algorithm.

	Introduced in Lustre 2.9osp.*.reserved_mb_low
 - The low watermark used to stop object allocation if available space
 is less than this. The default is 0.1% of total OST size.

	Introduced in Lustre 2.9osp.*.reserved_mb_high
 - The high watermark used to start object allocation if available
 space is more than this. The default is 0.2% of total OST size.

For more information about monitoring and managing free space, see Section 19.6, “Managing Free Space”.

38.8. Configuring Locking

The lru_size parameter is used to control the
 number of client-side locks in the LRU cached locks queue. LRU size is
 normally dynamic, based on load to optimize the number of locks cached
 on nodes that have different workloads (e.g., login/build nodes vs.
 compute nodes vs. backup nodes).
The total number of locks available is a function of the server RAM.
 The default limit is 50 locks/1 MB of RAM. If memory pressure is too high,
 the LRU size is shrunk. The number of locks on the server is limited to
 num_osts_per_oss * num_clients * lru_size
 as follows:
	To enable automatic LRU sizing, set the
	lru_size parameter to 0. In this case, the
	lru_size parameter shows the current number of locks
 being used on the client. Dynamic LRU resizing is enabled by default.
	

	To specify a maximum number of locks, set the
	lru_size parameter to a value other than zero.
	A good default value for compute nodes is around
	100 * num_cpus.
 It is recommended that you only set lru_size
	to be signifivantly larger on a few login nodes where multiple
	users access the file system interactively.

To clear the LRU on a single client, and, as a result, flush client
 cache without changing the lru_size value, run:
lctl set_param ldlm.namespaces.osc_name|mdc_name.lru_size=clear
If the LRU size is set lower than the number of existing locks,
 unused locks are canceled immediately. Use
 clear to cancel all locks without changing the value.

Note
The lru_size parameter can only be set
 temporarily using lctl set_param, it cannot be set
	permanently.

To disable dynamic LRU resizing on the clients, run for example:

lctl set_param ldlm.namespaces.*osc*.lru_size=5000
To determine the number of locks being granted with dynamic LRU
 resizing, run:
$ lctl get_param ldlm.namespaces.*.pool.limit
The lru_max_age parameter is used to control the
 age of client-side locks in the LRU cached locks queue. This limits how
 long unused locks are cached on the client, and avoids idle clients from
 holding locks for an excessive time, which reduces memory usage on both
 the client and server, as well as reducing work during server recovery.

The lru_max_age is set and printed in milliseconds,
 and by default is 3900000 ms (65 minutes).
Introduced in Lustre 2.11Since Lustre 2.11, in addition to setting the
 maximum lock age in milliseconds, it can also be set using a suffix of
 s or ms to indicate seconds or
 milliseconds, respectively. For example to set the client's maximum
 lock age to 15 minutes (900s) run:

lctl set_param ldlm.namespaces.*MDT*.lru_max_age=900s
lctl get_param ldlm.namespaces.*MDT*.lru_max_age
ldlm.namespaces.myth-MDT0000-mdc-ffff8804296c2800.lru_max_age=900000

38.9. Setting MDS and OSS Thread Counts

MDS and OSS thread counts tunable can be used to set the minimum and maximum thread counts
 or get the current number of running threads for the services listed in the table
 below.
	

 Service

 	

 Description

	
 mds.MDS.mdt
 	
 Main metadata operations service

	
 mds.MDS.mdt_readpage
 	
 Metadata readdir service

	
 mds.MDS.mdt_setattr
 	
 Metadata setattr/close operations service

	
 ost.OSS.ost
 	
 Main data operations service

	
 ost.OSS.ost_io
 	
 Bulk data I/O services

	
 ost.OSS.ost_create
 	
 OST object pre-creation service

	
 ldlm.services.ldlm_canceld
 	
 DLM lock cancel service

	
 ldlm.services.ldlm_cbd
 	
 DLM lock grant service

For each service, tunable parameters as shown below are available.

	To temporarily set these tunables, run:
lctl set_param service.threads_min|max|started=num

	To permanently set this tunable, run:
lctl conf_param obdname|fsname.obdtype.threads_min|max|started
Introduced in Lustre 2.5For version 2.5 or later, run:
		
lctl set_param -P service.threads_min|max|started

The following examples show how to set thread counts and get the number of running threads
 for the service ost_io using the tunable
	service.threads_min|max|started.
	To get the number of running threads, run:
lctl get_param ost.OSS.ost_io.threads_started
ost.OSS.ost_io.threads_started=128

	To set the number of threads to the maximum value (512), run:
lctl get_param ost.OSS.ost_io.threads_max
ost.OSS.ost_io.threads_max=512

	To set the maximum thread count to 256 instead of 512 (to avoid overloading the
 storage or for an array with requests), run:
lctl set_param ost.OSS.ost_io.threads_max=256
ost.OSS.ost_io.threads_max=256

	To set the maximum thread count to 256 instead of 512 permanently, run:
lctl conf_param testfs.ost.ost_io.threads_max=256
Introduced in Lustre 2.5For version 2.5 or later, run:

lctl set_param -P ost.OSS.ost_io.threads_max=256
ost.OSS.ost_io.threads_max=256

	 To check if the threads_max setting is active, run:
lctl get_param ost.OSS.ost_io.threads_max
ost.OSS.ost_io.threads_max=256

Note
If the number of service threads is changed while the file system is running, the change
 may not take effect until the file system is stopped and rest. If the number of service
 threads in use exceeds the new threads_max value setting, service threads
 that are already running will not be stopped.

See also Chapter 33, Tuning a Lustre File System

38.10. Enabling and Interpreting Debugging Logs

By default, a detailed log of all operations is generated to aid in
 debugging. Flags that control debugging are found via
 lctl get_param debug.
The overhead of debugging can affect the performance of Lustre file
 system. Therefore, to minimize the impact on performance, the debug level
 can be lowered, which affects the amount of debugging information kept in
 the internal log buffer but does not alter the amount of information to
 goes into syslog. You can raise the debug level when you need to collect
 logs to debug problems.
The debugging mask can be set using "symbolic names". The
 symbolic format is shown in the examples below.

	To verify the debug level used, examine the parameter that
 controls debugging by running:
lctl get_param debug
debug=
ioctl neterror warning error emerg ha config console

	To turn off debugging except for network error debugging, run
 the following command on all nodes concerned:
sysctl -w lnet.debug="neterror"
debug=neterror

	To turn off debugging completely (except for the minimum error
 reporting to the console), run the following command on all nodes
 concerned:
lctl set_param debug=0
debug=0

	To set an appropriate debug level for a production environment,
 run:
lctl set_param debug="warning dlmtrace error emerg ha rpctrace vfstrace"
debug=warning dlmtrace error emerg ha rpctrace vfstrace
The flags shown in this example collect enough high-level
 information to aid debugging, but they do not cause any serious
 performance impact.

	To add new flags to flags that have already been set,
 precede each one with a "+":
lctl set_param debug="+neterror +ha"
debug=+neterror +ha
lctl get_param debug
debug=neterror warning error emerg ha console

	To remove individual flags, precede them with a
 "-":
lctl set_param debug="-ha"
debug=-ha
lctl get_param debug
debug=neterror warning error emerg console

Debugging parameters include:
	subsystem_debug - Controls the debug logs for subsystems.

	debug_path - Indicates the location where the debug log is dumped
 when triggered automatically or manually. The default path is
 /tmp/lustre-log.

These parameters can also be set using:
sysctl -w lnet.debug={value}
Additional useful parameters:
	panic_on_lbug - Causes ''panic'' to be called
 when the Lustre software detects an internal problem (an LBUG log
 entry); panic crashes the node. This is particularly useful when a kernel crash dump
 utility is configured. The crash dump is triggered when the internal inconsistency is
 detected by the Lustre software.

	upcall - Allows you to specify the path to the binary which will
 be invoked when an LBUG log entry is encountered. This binary is
 called with four parameters:
 - The string ''LBUG''.
 - The file where the LBUG occurred.
 - The function name.
 - The line number in the file

38.10.1. Interpreting OST Statistics

Note
See also Section 43.6, “
llobdstat” (llobdstat) and
 Section 12.4, “
 CollectL
 ” (collectl).

OST stats files can be used to provide statistics showing activity
 for each OST. For example:
lctl get_param osc.testfs-OST0000-osc.stats
snapshot_time 1189732762.835363
ost_create 1
ost_get_info 1
ost_connect 1
ost_set_info 1
obd_ping 212
Use the llstat utility to monitor statistics over time.
To clear the statistics, use the -c option to
 llstat. To specify how frequently the statistics
 should be reported (in seconds), use the -i option.
 In the example below, the -c option clears the
 statistics and -i10 option reports statistics every
 10 seconds:
$ llstat -c -i10 ost_io

/usr/bin/llstat: STATS on 06/06/07
 /proc/fs/lustre/ost/OSS/ost_io/ stats on 192.168.16.35@tcp
snapshot_time 1181074093.276072

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074103.284895
Name Cur. Cur. #
 Count Rate Events Unit last min avg max stddev
req_waittime 8 0 8 [usec] 2078 34 259.75 868 317.49
req_qdepth 8 0 8 [reqs] 1 0 0.12 1 0.35
req_active 8 0 8 [reqs] 11 1 1.38 2 0.52
reqbuf_avail 8 0 8 [bufs] 511 63 63.88 64 0.35
ost_write 8 0 8 [bytes] 169767 72914 212209.62 387579 91874.29

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074113.290180
Name Cur. Cur. #
 Count Rate Events Unit last min avg max stddev
req_waittime 31 3 39 [usec] 30011 34 822.79 12245 2047.71
req_qdepth 31 3 39 [reqs] 0 0 0.03 1 0.16
req_active 31 3 39 [reqs] 58 1 1.77 3 0.74
reqbuf_avail 31 3 39 [bufs] 1977 63 63.79 64 0.41
ost_write 30 3 38 [bytes] 1028467 15019 315325.16 910694 197776.51

/proc/fs/lustre/ost/OSS/ost_io/stats @ 1181074123.325560
Name Cur. Cur. #
 Count Rate Events Unit last min avg max stddev
req_waittime 21 2 60 [usec] 14970 34 784.32 12245 1878.66
req_qdepth 21 2 60 [reqs] 0 0 0.02 1 0.13
req_active 21 2 60 [reqs] 33 1 1.70 3 0.70
reqbuf_avail 21 2 60 [bufs] 1341 63 63.82 64 0.39
ost_write 21 2 59 [bytes] 7648424 15019 332725.08 910694 180397.87

The columns in this example are described in the table below.
	
 Parameter

 	
 Description

	Name	Name of the service event. See the tables below for descriptions of service
 events that are tracked.
	

 Cur. Count

 	
 Number of events of each type sent in the last interval.

	

 Cur. Rate

 	
 Number of events per second in the last interval.

	

 # Events

 	
 Total number of such events since the events have been cleared.

	

 Unit

 	
 Unit of measurement for that statistic (microseconds, requests,
 buffers).

	

 last

 	
 Average rate of these events (in units/event) for the last interval during
 which they arrived. For instance, in the above mentioned case of
 ost_destroy it took an average of 736 microseconds per
 destroy for the 400 object destroys in the previous 10 seconds.

	

 min

 	
 Minimum rate (in units/events) since the service started.

	

 avg

 	
 Average rate.

	

 max

 	
 Maximum rate.

	

 stddev

 	
 Standard deviation (not measured in some cases)

Events common to all services are shown in the table below.
	
 Parameter

 	
 Description

	

 req_waittime

 	
 Amount of time a request waited in the queue before being handled by an
 available server thread.

	

 req_qdepth

 	
 Number of requests waiting to be handled in the queue for this service.

	

 req_active

 	
 Number of requests currently being handled.

	

 reqbuf_avail

 	
 Number of unsolicited lnet request buffers for this service.

Some service-specific events of interest are described in the table below.
	
 Parameter

 	
 Description

	

 ldlm_enqueue

 	
 Time it takes to enqueue a lock (this includes file open on the MDS)

	

 mds_reint

 	
 Time it takes to process an MDS modification record (includes
 create, mkdir, unlink,
 rename and setattr)

38.10.2. Interpreting MDT Statistics

Note
See also Section 43.6, “
llobdstat” (llobdstat) and
 Section 12.4, “
 CollectL
 ” (collectl).

MDT stats files can be used to track MDT
 statistics for the MDS. The example below shows sample output from an
 MDT stats file.
lctl get_param mds.*-MDT0000.stats
snapshot_time 1244832003.676892 secs.usecs
open 2 samples [reqs]
close 1 samples [reqs]
getxattr 3 samples [reqs]
process_config 1 samples [reqs]
connect 2 samples [reqs]
disconnect 2 samples [reqs]
statfs 3 samples [reqs]
setattr 1 samples [reqs]
getattr 3 samples [reqs]
llog_init 6 samples [reqs]
notify 16 samples [reqs]

Chapter 39. User Utilities

This chapter describes user utilities.
39.1.

 lfs

The
 lfs utility can be used for user configuration routines
 and monitoring.
39.1.1. Synopsis

lfs
lfs changelog [--follow] mdt_name [startrec [endrec]]
lfs changelog_clear mdt_name id endrec
lfs check mds|osts|servers
lfs data_version [-nrw] filename
lfs df [-i] [-h] [--pool]-p fsname[.pool] [path] [--lazy]
lfs find [[!] --atime|-A [-+]N] [[!] --mtime|-M [-+]N]
 [[!] --ctime|-C [-+]N] [--maxdepth|-D N] [--name|-n pattern]
 [--print|-p] [--print0|-P] [[!] --obd|-O ost_name[,ost_name...]]
 [[!] --size|-S [+-]N[kMGTPE]] --type |-t {bcdflpsD}]
 [[!] --gid|-g|--group|-G gname|gid]
 [[!] --uid|-u|--user|-U uname|uid]
 dirname|filename
lfs getname [-h]|[path...]
lfs getstripe [--obd|-O ost_name] [--quiet|-q] [--verbose|-v]
 [--stripe-count|-c] [--stripe-index|-i]
 [--stripe-size|-s] [--pool|-p] [--directory|-d]
 [--mdt-index|-M] [--recursive|-r] [--raw|-R]
 [--layout|-L]
 dirname|filename ...
lfs setstripe [--size|-s stripe_size] [--count|-c stripe_count]
 [--stripe-index|-i start_ost_index]
 [--ost-list|-o ost_indicies]
 [--pool|-p pool]
 dirname|filename
lfs setstripe -d dir
lfs osts [path]
lfs pool_list filesystem[.pool]| pathname
lfs quota [-q] [-v] [-h] [-o obd_uuid|-I ost_idx|-i mdt_idx]
 [-u username|uid|-g group|gid|-p projid] /mount_point
lfs quota -t -u|-g|-p /mount_point
lfs quotacheck [-ug] /mount_point
lfs quotachown [-i] /mount_point
lfs quotainv [-ug] [-f] /mount_point
lfs quotaon [-ugf] /mount_point
lfs quotaoff [-ug] /mount_point
lfs setquota {-u|--user|-g|--group|-p|--project} uname|uid|gname|gid|projid
 [--block-softlimit block_softlimit]
 [--block-hardlimit block_hardlimit]
 [--inode-softlimit inode_softlimit]
 [--inode-hardlimit inode_hardlimit]
 /mount_point
lfs setquota -u|--user|-g|--group|-p|--project uname|uid|gname|gid|projid
 [-b block_softlimit] [-B block_hardlimit]
 [-i inode-softlimit] [-I inode_hardlimit]
 /mount_point
lfs setquota -t -u|-g|-p [--block-grace block_grace]
 [--inode-grace inode_grace]
 /mount_point
lfs setquota -t -u|-g|-p [-b block_grace] [-i inode_grace]
 /mount_point
lfs help

Note
In the above example, the

 /mount_point
 parameter refers to the mount point of the Lustre file
 system.

Note
The old lfs quota output was very detailed and contained
 cluster-wide quota statistics (including cluster-wide limits for a
 user/group and cluster-wide usage for a user/group), as well as
 statistics for each MDS/OST. Now,
 lfs quota has been updated to provide only
 cluster-wide statistics, by default. To obtain the full report of
 cluster-wide limits, usage and statistics, use the
 -v option with
 lfs quota.

39.1.2. Description

The
 lfs utility is used to create a new file with a
 specific striping pattern, determine the default striping pattern, gather
 the extended attributes (object numbers and location) for a specific
 file, find files with specific attributes, list OST information or set
 quota limits. It can be invoked interactively without any arguments or in
 a non-interactive mode with one of the supported arguments.

39.1.3. Options

The various
 lfs options are listed and described below. For a
 complete list of available options, type help at the
 lfs prompt.
	

 Option

 	

 Description

	

 changelog

 	
 Shows the metadata changes on an MDT. Start and end
 points are optional. The
 --follow option blocks on new changes; this
 option is only valid when run directly on the MDT node.

	

 changelog_clear

 	
 Indicates that changelog records previous to

 endrec
 are no longer of interest to a particular consumer

 id
 , potentially allowing the MDT to free up disk space.
 An

 endrec
 of 0 indicates the current last record. Changelog
 consumers must be registered on the MDT node using
 lctl.

	
 check
 	
 Displays the status of MDS or OSTs (as specified in the
 command) or all servers (MDS and OSTs).

	

 data_version [-nrw]
 filename

 	
		Displays the current version of file data. If
		-n is specified, the data version is read
		without taking a lock. As a consequence, the data version could
		be outdated if there are dirty caches on filesystem clients, but
		this option will not force data flushes and has less of an
		impact on the filesystem. If -r is specified,
		the data version is read after dirty pages on clients are
		flushed. If -w is specified, the data version
		is read after all caching pages on clients are flushed.
		

		
		Even with -r or -w, race
		conditions are possible and the data version should be checked
		before and after an operation to be confident the data did not
		change during it.
		

		
		The data version is the sum of the last committed transaction
		numbers of all data objects of a file. It is used by HSM policy
		engines for verifying that file data has not been changed during
		an archive operation or before a release operation, and by OST
		migration, primarily for verifying that file data has not been
		changed during a data copy, when done in non-blocking mode.
		

	
 df [-i] [-h] [--pool|-p
 fsname[.
 pool] [
 path] [--lazy]
 	
 Use
 -i to report file system disk space usage or
 inode usage of each MDT or OST or, if a pool is specified with
 the
 -p option, a subset of OSTs.

 By default, the usage of all mounted Lustre file systems
 is reported. If the
 path option is included, only the usage for
 the specified file system is reported. If the
 -h option is included, the output is printed
 in human-readable format, using SI base-2 suffixes for
 Mega-,
 Giga-,
 Tera-,
 Peta-, or
 Exabytes.

 If the
 --lazy option is specified, any OST that is
 currently disconnected from the client will be skipped. Using
 the
 --lazy option prevents the
 df output from being blocked when an OST is
 offline. Only the space on the OSTs that can currently be
 accessed are returned. The
 llite.*.lazystatfs tunable can be enabled to
 make this the default behaviour for all
 statfs() operations.

	

 find

 	
 Searches the directory tree rooted at the given
 directory/filename for files that match the given
 parameters.

 Using
 ! before an option negates its meaning (files
 NOT matching the parameter). Using
 + before a numeric value means files with the
 parameter OR MORE. Using
 - before a numeric value means files with the
 parameter OR LESS.

	 	
 --atime
 	
 File was last accessed N*24 hours ago. (There is no
 guarantee that
 atime is kept coherent across the
 cluster.)

 OSTs store a transient
 atime that is updated when clients do read
 requests. Permanent
 atime is written to the MDS when the file is
 closed. However, on-disk atime is only updated if it is more
 than 60 seconds old (
 /proc/fs/lustre/mds/*/max_atime_diff). The
 Lustre software considers the latest
 atime from all OSTs. If a
 setattr is set by user, then it is updated on
 both the MDS and OST, allowing the
 atime to go backward.

	

 	

 --ctime

 	
 File status was last changed N*24 hours ago.

	

 	

 --mtime

 	
 File data was last modified N*24 hours ago.

	

 	

 --obd

 	
 File has an object on a specific OST(s).

	

 	

 --size

 	
 File has a size in bytes, or kilo-, Mega-, Giga-, Tera-,
 Peta- or Exabytes if a suffix is given.

	

 	

 --type

 	
 File has the type - block, character, directory, pipe,
 file, symlink, socket or door (used in Solaris operating
 system).

	

 	

 --uid

 	
 File has a specific numeric user ID.

	

 	

 --user

 	
 File owned by a specific user (numeric user ID
 allowed).

	

 	

 --gid

 	
 File has a specific group ID.

	

 	

 --group

 	
 File belongs to a specific group (numeric group ID
 allowed).

	

 	
 -
 -maxdepth

 	
 Limits find to descend at most N levels of the directory
 tree.

	

 	

 --print/
 --print0

 	
 Prints the full filename, followed by a new line or NULL
 character correspondingly.

	

 osts [path]

 	
 Lists all OSTs for the file system. If a path located on
 a mounted Lustre file system is specified, then only OSTs
 belonging to this file system are displayed.

	

 getname [path...]

 	
 List each Lustre file system instance associated with
 each Lustre mount point. If no path is specified, all Lustre
 mount points are interrogated. If a list of paths is provided,
 the instance of each path is provided. If the path is not a
 Lustre instance 'No such device' is returned.

	

 getstripe

 	
 Lists striping information for a given filename or
 directory. By default, the stripe count, stripe size and offset
 are returned.

 If you only want specific striping information, then the
 options of
 --stripe-count,
 --stripe-size,
 --stripe-index,
 --layout, or
 --pool plus various combinations of these
 options can be used to retrieve specific information.

 If the
 --raw option is specified, the stripe
 information is printed without substituting the file system
 default values for unspecified fields. If the striping EA is
 not set, 0, 0, and -1 will be printed for the stripe count,
 size, and offset respectively.

 Introduced in Lustre 2.4The
 --mdt-index prints the index of the MDT for a given
 directory. See
 Section 14.9.1, “Removing an MDT from the File System”.

	

 	

 --obd
 ost_name

 	
 Lists files that have an object on a specific OST.

	

 	

 --quiet

 	
 Lists details about the file's object ID
 information.

	

 	

 --verbose

 	
 Prints additional striping information.

	

 	

 --count

 	
 Lists the stripe count (how many OSTs to use).

	

 	

 --index

 	
 Lists the index for each OST in the file system.

	

 	

 --offset

 	
 Lists the OST index on which file striping starts.

	

 	

 --pool

 	
 Lists the pools to which a file belongs.

	

 	

 --size

 	
 Lists the stripe size (how much data to write to one OST
 before moving to the next OST).

	

 	

 --directory

 	
 Lists entries about a specified directory instead of its
 contents (in the same manner as
 ls -d).

	

 	

 --recursive

 	
 Recurses into all sub-directories.

	

 setstripe

 	
 Create new files with a specific file layout (stripe
 pattern) configuration.
 [a]

	

 	

 --count stripe_cnt

 	
 Number of OSTs over which to stripe a file. A
 stripe_cnt of 0 uses the file system-wide
 default stripe count (default is 1). A
 stripe_cnt of -1 stripes over all available
 OSTs.

	

 	

 --size stripe_size
 [b]

 	
 Number of bytes to store on an OST before moving to the
 next OST. A stripe_size of 0 uses the file system's default
 stripe size, (default is 1 MB). Can be specified with
 k(KB),
 m(MB), or
 g(GB), respectively.

	

 	

 --stripe-index start_ost_index

 	
 The OST index (base 10, starting at 0) on which to start
 striping for this file. A start_ost_index value of -1 allows
 the MDS to choose the starting index. This is the default
 value, and it means that the MDS selects the starting OST as it
 wants. We strongly recommend selecting this default, as it
 allows space and load balancing to be done by the MDS as
 needed. The
 start_ost_index value has no relevance on
 whether the MDS will use round-robin or QoS weighted allocation
 for the remaining stripes in the file.

	

 	

 --ost-index ost_indices

 	
				This option is used to specify the exact stripe
 layout on the the file system. ost_indices
 is a list of OSTs referenced by their indices and index ranges
 separated by commas, e.g. 1,2-4,7.

	

 	

 --pool
 pool

 	
 Name of the pre-defined pool of OSTs (see
 Section 43.3, “
lctl”) that will be used
 for striping. The
 stripe_cnt,
 stripe_size and
 start_ost values are used as well. The
 start-ost value must be part of the pool or an error is
 returned.

	

 setstripe -d

 	
 Deletes default striping on the specified
 directory.

	

 pool_list {filesystem}[.poolname]|{pathname}

 	
 Lists pools in the file system or pathname, or OSTs in
 the file system's pool.

	

 quota [-q] [-v] [-o
 obd_uuid|-i
 mdt_idx|-I
 ost_idx] [-u|-g|-p
 uname|uid|gname|gid|projid]
 /mount_point

 	
 Displays disk usage and limits, either for the full file
 system or for objects on a specific OBD. A user or group name
 or an usr, group and project ID can be specified. If all user,
		group project ID are omitted, quotas for the current UID/GID
		are shown. The -q option disables printing
		of additional descriptions (including column titles). It fills
		in blank spaces in the
 grace column with zeros (when there is no
 grace period set), to ensure that the number of columns is
 consistent. The
 -v option provides more verbose (per-OBD
 statistics) output.

	

 quota -t
 -u|-g|-p
 /mount_point

 	
 Displays block and inode grace times for user (
 -u) or group (
 -g) or project (
		-p) quotas.

	

 quotachown

 	
 Changes the file's owner and group on OSTs of the
 specified file system.

	

 quotacheck [-ugf]
 /mount_point

 	
 Scans the specified file system for disk usage, and
 creates or updates quota files. Options specify quota for users
 (
 -u), groups (
 -g), and force (
 -f).

	

 quotaon [-ugf]
 /mount_point

 	
 Turns on file system quotas. Options specify quota for
 users (
 -u), groups (
 -g), and force (
 -f).

	

 quotaoff [-ugf]
 /mount_point

 	
 Turns off file system quotas. Options specify quota for
 users (
 -u), groups (
 -g), and force (
 -f).

	

 quotainv [-ug] [-f]
 /mount_point

 	
 Clears quota files (administrative quota files if used
 without
 -f, operational quota files otherwise), all
 of their quota entries for users (
 -u) or groups (
 -g). After running
 quotainv, you must run
 quotacheck before using quotas.

 Caution
Use extreme caution when using this command; its
 results cannot be undone.

	

 setquota {-u|-g|-p
 uname|uid|gname|gid|projid}
 [--block-softlimit
 block_softlimit]
 [--block-hardlimit
 block_hardlimit]
 [--inode-softlimit
 inode_softlimit]
 [--inode-hardlimit
 inode_hardlimit]
 /mount_point

 	
 Sets file system quotas for users, groups or one project.
		Limits can be specified with
 --{block|inode}-{softlimit|hardlimit} or
 their short equivalents
 -b,
 -B,
 -i,
 -I. Users can set 1, 2, 3 or 4 limits.
 [c]Also, limits can be specified with special suffixes,
 -b, -k, -m, -g, -t, and -p to indicate units of 1, 2^10, 2^20,
 2^30, 2^40 and 2^50, respectively. By default, the block limits
 unit is 1 kilobyte (1,024), and block limits are always
 kilobyte-grained (even if specified in bytes). See
 Section 39.1.4, “Examples”.

	

 setquota -t -u|-g|-p [--block-grace
 block_grace] [--inode-grace
 inode_grace]
 /mount_point

 	
 Sets the file system quota grace times for users or
 groups. Grace time is specified in '
 XXwXXdXXhXXmXXs' format or as an integer
 seconds value. See
 Section 39.1.4, “Examples”.

	

 help

 	
 Provides brief help on various
 lfs arguments.

	

 exit/quit

 	
 Quits the interactive
 lfs session.

	[a] The file cannot exist prior to using
 setstripe. A directory must exist prior to
 using
 setstripe.

[b] The default stripe-size is 0. The default start-ost is
 -1. Do NOT confuse them! If you set start-ost to 0, all new
 file creations occur on OST 0 (seldom a good idea).

[c] The old
 setquota interface is supported, but it may
 be removed in a future Lustre software release.

39.1.4. Examples

Creates a file striped on two OSTs with 128 KB on each
 stripe.

$ lfs setstripe -s 128k -c 2 /mnt/lustre/file1

Deletes a default stripe pattern on a given directory. New files
 use the default striping pattern.

$ lfs setstripe -d /mnt/lustre/dir

Lists the detailed object allocation of a given file.

$ lfs getstripe -v /mnt/lustre/file1

List all the mounted Lustre file systems and corresponding Lustre
 instances.

$ lfs getname

Efficiently lists all files in a given directory and its
 subdirectories.

$ lfs find /mnt/lustre

Recursively lists all regular files in a given directory more than
 30 days old.

$ lfs find /mnt/lustre -mtime +30 -type f -print

Recursively lists all files in a given directory that have objects
 on OST2-UUID. The lfs check servers command checks the status of all
 servers (MDT and OSTs).

$ lfs find --obd OST2-UUID /mnt/lustre/

Lists all OSTs in the file system.

$ lfs osts

Lists space usage per OST and MDT in human-readable format.

$ lfs df -h

Lists inode usage per OST and MDT.

$ lfs df -i

List space or inode usage for a specific OST pool.

$ lfs df --pool
filesystem[.
pool] |
pathname

List quotas of user 'bob'.

$ lfs quota -u bob /mnt/lustre

List quotas of project ID '1'.

$ lfs quota -p 1 /mnt/lustre

Show grace times for user quotas on
 /mnt/lustre.

$ lfs quota -t -u /mnt/lustre

Changes file owner and group.

$ lfs quotachown -i /mnt/lustre

Checks quotas for user and group. Turns on quotas after making the
 check.

$ lfs quotacheck -ug /mnt/lustre

Turns on quotas of user and group.

$ lfs quotaon -ug /mnt/lustre

Turns off quotas of user and group.

$ lfs quotaoff -ug /mnt/lustre

Sets quotas of user 'bob', with a 1 GB block quota hardlimit and a
 2 GB block quota softlimit.

$ lfs setquota -u bob --block-softlimit 2000000 --block-hardlimit 1000000
/mnt/lustre

Sets grace times for user quotas: 1000 seconds for block quotas, 1
 week and 4 days for inode quotas.

$ lfs setquota -t -u --block-grace 1000 --inode-grace 1w4d /mnt/lustre

Checks the status of all servers (MDT, OST)

$ lfs check servers

Creates a file striped on two OSTs from the pool
 my_pool

$ lfs setstripe --pool my_pool -c 2 /mnt/lustre/file

Lists the pools defined for the mounted Lustre file system
 /mnt/lustre

$ lfs pool_list /mnt/lustre/

Lists the OSTs which are members of the pool
 my_pool in file system
 my_fs

$ lfs pool_list my_fs.my_pool

Finds all directories/files associated with
 poolA.

$ lfs find /mnt/lustre --pool poolA

Finds all directories/files not associated with a pool.

$ lfs find /mnt//lustre --pool ""

Finds all directories/files associated with pool.

$ lfs find /mnt/lustre ! --pool ""

Associates a directory with the pool
 my_pool, so all new files and directories are created
 in the pool.

$ lfs setstripe --pool my_pool /mnt/lustre/dir

39.1.5. See Also

 Section 43.3, “
lctl”

39.2.

 lfs_migrate

The
 lfs_migrate utility is a simple to migrate file
 data between OSTs.
39.2.1. Synopsis

lfs_migrate [lfs_setstripe_options]
	[-h] [-n] [-q] [-R] [-s] [-y] [-0] [file|directory ...]

39.2.2. Description

The
 lfs_migrate utility is a tool to assist migration
 of file data between Lustre OSTs. The utility copies each specified
 file to a temporary file using supplied lfs setstripe
 options, if any, optionally verifies the file contents have not changed,
 and then swaps the layout (OST objects) from the temporary file and the
 original file (for Lustre 2.5 and later), or renames the temporary file
 to the original filename. This allows the user/administrator to balance
 space usage between OSTs, or move files off OSTs that are starting to show
 hardware problems (though are still functional) or will be removed.
Warning
For versions of Lustre before 2.5,
 lfs_migrate was not integrated with the MDS at all.
 That made it UNSAFE for use on files that were being modified by other
	applications, since the file was migrated through a copy and rename of
	the file. With Lustre 2.5 and later, the new file layout is swapped
	with the existing file layout, which ensures that the user-visible
	inode number is kept, and open file handles and locks on the file are
	kept.

Files to be migrated can be specified as command-line arguments. If
 a directory is specified on the command-line then all files within the
 directory are migrated. If no files are specified on the command-line,
 then a list of files is read from the standard input, making
 lfs_migrate suitable for use with
 lfs find to locate files on specific OSTs and/or
 matching other file attributes, and other tools that generate a list
 of files on standard output.
Unless otherwise specified through command-line options, the
 file allocation policies on the MDS dictate where the new files
 are placed, taking into account whether specific OSTs have been
 disabled on the MDS via lctl (preventing new
 files from being allocated there), whether some OSTs are overly full
 (reducing the number of files placed on those OSTs), or if there is
 a specific default file striping for the parent directory (potentially
 changing the stripe count, stripe size, OST pool, or OST index of a
 new file).
Note
The
 lfs_migrate utility can also be used in some cases to
 reduce file
 fragmentation. File fragmentation will typically reduce
 Lustre file system performance. File fragmentation may be observed on
 an aged file system and will commonly occur if the file was written by
 many threads. Provided there is sufficient free space (or if it was
 written when the file system was nearly full) that is less fragmented
 than the file being copied, re-writing a file with
 lfs_migrate will result in a migrated file with
 reduced fragmentation. The tool
 filefrag can be used to report file fragmentation.
 See
 Section 39.3, “

 filefrag
 ”

Note
As long as a file has extent lengths of tens of megabytes (
 read_bandwidth * seek_time) or more, the
 read performance for the file will not be significantly impacted by
 fragmentation, since the read pipeline can be filled by large reads
 from disk even with an occasional disk seek.

39.2.3. Options

Options supporting
 lfs_migrate are described below.
	

 Option

 	

 Description

	

 -c
 stripecount

 	
 Restripe file using the specified stripe count. This
 option may not be specified at the same time as the
 -R option.

	

 -h

 	
 Display help information.

	
 -l
 	
 Migrate files with hard links (skips, by default). Files
 with multiple hard links are split into multiple separate files
 by
 lfs_migrate, so they are skipped, by
 default, to avoid breaking the hard links.

	
 -n
 	
 Only print the names of files to be migrated.

	

 -q

 	
 Run quietly (does not print filenames or status).

	
 -R
 	Restripe file using default directory striping instead of
 keeping striping. This option may not be specified at the same
 time as the
 -c option.
	
 -s
 	Skip file data comparison after migrate. Default is to
 compare migrated file against original to verify
 correctness.
	

 -y

 	
 Answer '
 y' to usage warning without prompting (for
 scripts, use with caution).

	
 -0
 	Expect NUL-terminated filenames on standard input, as
 generated by lfs find -print0 or
	 find -print0. This allows filenames with
	 embedded newlines to be handled correctly.

39.2.4. Examples

Rebalance all files in
 /mnt/lustre/dir:

$ lfs_migrate /mnt/lustre/dir

Migrate files in /test filesystem on OST0004 larger than 4 GB in
 size and older than a day old:

$ lfs find /test -obd test-OST0004 -size +4G -mtime +1 | lfs_migrate -y

39.2.5. See Also

 Section 39.1, “

 lfs
 ”

39.3.

 filefrag

The
 e2fsprogs package contains the
 filefrag tool which reports the extent of file
 fragmentation.
39.3.1. Synopsis

filefrag [-belsv] [files...]

39.3.2. Description

The
 filefrag utility reports the extent of fragmentation in
 a given file. The
 filefrag utility obtains the extent information from
 Lustre files using the
 FIEMAP ioctl, which is efficient and fast, even for
 very large files.
In default mode
 [5],
 filefrag prints the number of physically discontiguous
 extents in the file. In extent or verbose mode, each extent is printed
 with details such as the blocks allocated on each OST. For a Lustre file
 system, the extents are printed in device offset order (i.e. all of the
 extents for one OST first, then the next OST, etc.), not file logical
 offset order. If the file logical offset order was used, the Lustre
 striping would make the output very verbose and difficult to see if there
 was file fragmentation or not.
Note
Note that as long as a file has extent lengths of tens of
 megabytes or more (i.e.
 read_bandwidth * seek_time >
 extent_length), the read performance for the file will
 not be significantly impacted by fragmentation, since file readahead
 can fully utilize the disk disk bandwidth even with occasional
 seeks.

In default mode
 [6],
 filefrag returns the number of physically discontiguous
 extents in the file. In extent or verbose mode, each extent is printed
 with details. For a Lustre file system, the extents are printed in device
 offset order, not logical offset order.

39.3.3. Options

The options and descriptions for the
 filefrag utility are listed below.
	

 Option

 	

 Description

	

 -b

 	
 Uses the 1024-byte blocksize for the output. By default,
 this blocksize is used by the Lustre file system, since OSTs
 may use different block sizes.

	

 -e

 	
 Uses the extent mode when printing the output. This is
 the default for Lustre files in verbose mode.

	

 -l

 	
 Displays extents in LUN offset order. This is the only
 available mode for Lustre.

	

 -s

 	
 Synchronizes any unwritten file data to disk before
 requesting the mapping.

	

 -v

 	
 Prints the file's layout in verbose mode when checking
 file fragmentation, including the logical to physical mapping
 for each extent in the file and the OST index.

39.3.4. Examples

Lists default output.

$ filefrag /mnt/lustre/foo
/mnt/lustre/foo: 13 extents found

Lists verbose output in extent format.

$ filefrag -v /mnt/lustre/foo
Filesystem type is: bd00bd0
File size of /mnt/lustre/foo is 1468297786 (1433888 blocks of 1024 bytes)
 ext: device_logical: physical_offset: length: dev: flags:
 0: 0.. 122879: 2804679680..2804802559: 122880: 0002: network
 1: 122880.. 245759: 2804817920..2804940799: 122880: 0002: network
 2: 245760.. 278527: 2804948992..2804981759: 32768: 0002: network
 3: 278528.. 360447: 2804982784..2805064703: 81920: 0002: network
 4: 360448.. 483327: 2805080064..2805202943: 122880: 0002: network
 5: 483328.. 606207: 2805211136..2805334015: 122880: 0002: network
 6: 606208.. 729087: 2805342208..2805465087: 122880: 0002: network
 7: 729088.. 851967: 2805473280..2805596159: 122880: 0002: network
 8: 851968.. 974847: 2805604352..2805727231: 122880: 0002: network
 9: 974848.. 1097727: 2805735424..2805858303: 122880: 0002: network
 10: 1097728.. 1220607: 2805866496..2805989375: 122880: 0002: network
 11: 1220608.. 1343487: 2805997568..2806120447: 122880: 0002: network
 12: 1343488.. 1433599: 2806128640..2806218751: 90112: 0002: network
/mnt/lustre/foo: 13 extents found

[5] The default mode is faster than the verbose/extent mode since it
 only counts the number of extents.

[6] The default mode is faster than the verbose/extent mode.

39.4.

 mount

The standard
 mount(8) Linux command is used to mount a Lustre file
 system. When mounting a Lustre file system, mount(8) executes the
 /sbin/mount.lustre command to complete the mount. The
 mount command supports these options specific to a Lustre file
 system:
	

 Server options

 	

 Description

	

 abort_recov

 	
 Aborts recovery when starting a target

	

 nosvc

 	
 Starts only MGS/MGC servers

	

 nomgs

 	
 Start a MDT with a co-located MGS without starting the
 MGS

	

 exclude

 	
 Starts with a dead OST

	

 md_stripe_cache_size

 	
 Sets the stripe cache size for server side disk with a
 striped raid configuration

	

 Client options

 	

 Description

	

 flock/noflock/localflock

 	
 Enables/disables global flock or local flock support

	

 user_xattr/nouser_xattr

 	
 Enables/disables user-extended attributes

	

 user_fid2path/nouser_fid2path

 	
 Enables/disables FID to path translation by
 regular users

	

 retry=

 	
 Number of times a client will retry to mount the file
 system

39.5. Handling Timeouts

Timeouts are the most common cause of hung applications. After a
 timeout involving an MDS or failover OST, applications attempting to access
 the disconnected resource wait until the connection gets
 established.
When a client performs any remote operation, it gives the server a
 reasonable amount of time to respond. If a server does not reply either due
 to a down network, hung server, or any other reason, a timeout occurs which
 requires a recovery.
If a timeout occurs, a message (similar to this one), appears on the
 console of the client, and in
 /var/log/messages:

LustreError: 26597:(client.c:810:ptlrpc_expire_one_request()) @@@ timeout

req@a2d45200 x5886/t0 o38->mds_svc_UUID@NID_mds_UUID:12 lens 168/64 ref 1 fl

RPC:/0/0 rc 0

Chapter 40. Programming Interfaces

This chapter describes public programming interfaces to that can be
 used to control various aspects of a Lustre file system from userspace.
 This chapter includes the following sections:
	Section 40.1, “User/Group Upcall”

	Section 40.1.3, “Data Structures”

Note
Lustre programming interface man pages are found in the lustre/doc folder.

40.1. User/Group Upcall

This section describes the supplementary user/group upcall, which
 allows the MDS to retrieve and verify the supplementary groups to which
 a particular user is assigned. This avoids the need to pass all the
 supplementary groups from the client to the MDS with every RPC.
Note
For information about universal UID/GID requirements in a Lustre
 file system environment, see
 Section 8.1.2, “Environmental Requirements”.

40.1.1. Synopsis

The MDS uses the utility as specified by
 lctl get_param mdt.${FSNAME}-MDT{xxxx}.identity_upcall
 to look up the supplied UID in order to retrieve the user's supplementary
 group membership. The result is temporarily cached in the kernel (for
 five minutes, by default) to avoid the overhead of calling into
 userspace repeatedly.

40.1.2. Description

The identity_upcall parameter contains the path
 to an executable that is run to map a numeric UID to a group membership
 list. This upcall executable opens the
 mdt.${FSNAME}-MDT{xxxx}.identity_info parameter file
 and writes the related identity_downcall_data data
 structure (see Section 40.1.3, “Data Structures”). The
 upcall is configured with
 lctl set_param mdt.${FSNAME}-MDT{xxxx}.identity_upcall.
The default identity upcall program installed is
 lustre/utils/l_getidentity.c in the Lustre source
 distribution.
40.1.2.1. Primary and Secondary Groups

The mechanism for the primary/secondary group is as follows:

	The MDS issues an upcall (set per MDS) to map the numeric
 UID to the supplementary group(s).

	If there is no upcall or if there is an upcall and it fails,
 one supplementary group at most will be added as supplied by the
 client.

	The default upcall /usr/sbin/l_getidentity
 can interact with the user/group database on the MDS to map the
 UID to the GID and supplementary GID. The user/group database
 depends on how authentication is configured on the MDS, such as
 local /etc/passwd, Network Information Service
 (NIS), Lightweight Directory Access Protocol (LDAP), or SMB
 Domain services, as configured. If the upcall interface is set
 to NONE, then upcall is disabled, and the MDS uses only the UID,
 GID, and one supplementary GID supplied by the client.

	The MDS will wait a limited time for the group upcall program
 to complete, to avoid MDS threads and clients hanging due to
 errors accessing a remote service node. The upcall must finish
 within 30s before the MDS will continue without the supplementary
 data. The upcall timeout can be set on the MDS using:
 lctl set_param mdt.*.identity_acquire_expire=seconds

	The default group upcall is set permanently by
 mkfs.lustre. To set a custom upcall for a
 particular filesystem, use
 tunefs.lustre --param or
 lctl set_param -P mdt.FSNAME-MDTxxxx.identity_upcall=path

	The group downcall data is cached by the kernel to avoid
 repeated upcalls for the same user slowing down the MDS. This
 cache is expired from the kernel after 1200s (20 minutes) by
 default. The cache age can be set on the MDS using:
 lctl set_param mdt.*.identity_expire=seconds

40.1.3. Data Structures

struct perm_downcall_data {
 __u64 pdd_nid;
 __u32 pdd_perm;
 __u32 pdd_padding;
};

struct identity_downcall_data{
 __u32 idd_magic;
 :
 :

Chapter 41. Setting Lustre Properties in a C Program (llapi)

This chapter describes the llapi library of commands used for setting Lustre file properties within a C program running in a cluster environment, such as a data processing or MPI application. The commands described in this chapter are:
	Section 41.1, “
 llapi_file_create
 ”

	Section 41.2, “llapi_file_get_stripe”

	Section 41.3, “
 llapi_file_open
 ”

	Section 41.4, “
 llapi_quotactl
 ”

	Section 41.5, “
 llapi_path2fid
 ”

Note
Lustre programming interface man pages are found in the lustre/doc folder.

41.1.
 llapi_file_create

Use llapi_file_create to set Lustre properties for a new file.
41.1.1. Synopsis

#include <lustre/lustreapi.h>

int llapi_file_create(char *name, long stripe_size, int stripe_offset, int stripe_count, int stripe_pattern);

41.1.2. Description

The llapi_file_create() function sets a file descriptor's Lustre
 file system striping information. The file descriptor is then accessed with
 open().
	
 Option

 	
 Description

	
 llapi_file_create()

 	
 If the file already exists, this parameter returns to 'EEXIST'. If the stripe parameters are invalid, this parameter returns to 'EINVAL'.

	
 stripe_size

 	
 This value must be an even multiple of system page size, as shown by getpagesize(). The default Lustre stripe size is 4MB.

	
 stripe_offset

 	
 Indicates the starting OST for this file.

	
 stripe_count

 	
 Indicates the number of OSTs that this file will be striped across.

	
 stripe_pattern

 	
 Indicates the RAID pattern.

Note
Currently, only RAID 0 is supported. To use the system defaults, set these values: stripe_size = 0, stripe_offset = -1, stripe_count = 0, stripe_pattern = 0

41.1.3. Examples

System default size is 4 MB.
char *tfile = TESTFILE;
int stripe_size = 65536
To start at default, run:
int stripe_offset = -1
To start at the default, run:
int stripe_count = 1
To set a single stripe for this example, run:
int stripe_pattern = 0
Currently, only RAID 0 is supported.
int stripe_pattern = 0;
int rc, fd;
rc = llapi_file_create(tfile, stripe_size,stripe_offset, stripe_count,stripe_pattern);
Result code is inverted, you may return with 'EINVAL' or an ioctl error.
if (rc) {
fprintf(stderr,"llapi_file_create failed: %d (%s) 0, rc, strerror(-rc));return -1; }
llapi_file_create closes the file descriptor. You must re-open the descriptor. To do this, run:
fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644); if (fd < 0) \ {
fprintf(stderr, "Can't open %s file: %s0, tfile,
str-
error(errno));
return -1;
}

Introduced in Lustre 2.9

41.2. llapi_file_get_stripe

Use llapi_file_get_stripe to get striping information for a file or directory on a Lustre file system.
41.2.1. Synopsis

#include <lustre/lustreapi.h>

int llapi_file_get_stripe(const char *path, void *lum);

41.2.2. Description

The llapi_file_get_stripe() function returns striping information for a file or directory path in lum (which should point to a large enough memory region) in one of the following formats:
struct lov_user_md_v1 {
__u32 lmm_magic;
__u32 lmm_pattern;
__u64 lmm_object_id;
__u64 lmm_object_seq;
__u32 lmm_stripe_size;
__u16 lmm_stripe_count;
__u16 lmm_stripe_offset;
struct lov_user_ost_data_v1 lmm_objects[0];
} __attribute__((packed));
struct lov_user_md_v3 {
__u32 lmm_magic;
__u32 lmm_pattern;
__u64 lmm_object_id;
__u64 lmm_object_seq;
__u32 lmm_stripe_size;
__u16 lmm_stripe_count;
__u16 lmm_stripe_offset;
char lmm_pool_name[LOV_MAXPOOLNAME];
struct lov_user_ost_data_v1 lmm_objects[0];
} __attribute__((packed));
	
 Option

 	
 Description

	
 lmm_magic

 	
 Specifies the format of the returned striping information. LOV_MAGIC_V1 is used for lov_user_md_v1. LOV_MAGIC_V3 is used for lov_user_md_v3.

	
 lmm_pattern

 	
 Holds the striping pattern. Only LOV_PATTERN_RAID0 is
 possible in this Lustre software release.

	
 lmm_object_id

 	
 Holds the MDS object ID.

	
 lmm_object_gr

 	
 Holds the MDS object group.

	
 lmm_stripe_size

 	
 Holds the stripe size in bytes.

	
 lmm_stripe_count

 	
 Holds the number of OSTs over which the file is striped.

	
 lmm_stripe_offset

 	
 Holds the OST index from which the file starts.

	
 lmm_pool_name

 	
 Holds the OST pool name to which the file belongs.

	
 lmm_objects

 	
 An array of lmm_stripe_count members containing per OST file information in

 the following format:

 struct lov_user_ost_data_v1 {
 __u64 l_object_id;
 __u64 l_object_seq;
 __u32 l_ost_gen;
 __u32 l_ost_idx;
 } __attribute__((packed));

	
 l_object_id

 	
 Holds the OST's object ID.

	
 l_object_seq

 	
 Holds the OST's object group.

	
 l_ost_gen

 	
 Holds the OST's index generation.

	
 l_ost_idx

 	
 Holds the OST's index in LOV.

41.2.3. Return Values

llapi_file_get_stripe() returns:
0 On success
!= 0 On failure, errno is set appropriately

41.2.4. Errors

	
 Errors

 	
 Description

	
 ENOMEM

 	
 Failed to allocate memory

	
 ENAMETOOLONG

 	
 Path was too long

	
 ENOENT

 	
 Path does not point to a file or directory

	
 ENOTTY

 	
 Path does not point to a Lustre file system

	
 EFAULT

 	
 Memory region pointed by lum is not properly mapped

41.2.5. Examples

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <lustre/lustreapi.h>

static inline int maxint(int a, int b)
{
	return a > b ? a : b;
}
static void *alloc_lum()
{
	int v1, v3, join;
	v1 = sizeof(struct lov_user_md_v1) +
		LOV_MAX_STRIPE_COUNT * sizeof(struct lov_user_ost_data_v1);
	v3 = sizeof(struct lov_user_md_v3) +
		LOV_MAX_STRIPE_COUNT * sizeof(struct lov_user_ost_data_v1);
	return malloc(maxint(v1, v3));
}
int main(int argc, char** argv)
{
	struct lov_user_md *lum_file = NULL;
	int rc;
	int lum_size;
	if (argc != 2) {
		fprintf(stderr, "Usage: %s <filename>\n", argv[0]);
		return 1;
	}
	lum_file = alloc_lum();
	if (lum_file == NULL) {
		rc = ENOMEM;
		goto cleanup;
	}
	rc = llapi_file_get_stripe(argv[1], lum_file);
	if (rc) {
		rc = errno;
		goto cleanup;
	}
	/* stripe_size stripe_count */
	printf("%d %d\n",
			lum_file->lmm_stripe_size,
			lum_file->lmm_stripe_count);
cleanup:
	if (lum_file != NULL)
		free(lum_file);
	return rc;
}

41.3.
 llapi_file_open

The llapi_file_open command opens (or creates) a file or device on a
 Lustre file system.
41.3.1. Synopsis

#include <lustre/lustreapi.h>
int llapi_file_open(const char *name, int flags, int mode,
 unsigned long long stripe_size, int stripe_offset,
 int stripe_count, int stripe_pattern);
int llapi_file_create(const char *name, unsigned long long stripe_size,
 int stripe_offset, int stripe_count,
 int stripe_pattern);

41.3.2. Description

The llapi_file_create() call is equivalent to the llapi_file_open call with flags equal to O_CREAT|O_WRONLY and mode equal to 0644, followed by file close.
llapi_file_open() opens a file with a given name on a Lustre file
 system.
	
 Option

 	
 Description

	
 flags

 	
 Can be a combination of O_RDONLY, O_WRONLY, O_RDWR, O_CREAT, O_EXCL, O_NOCTTY, O_TRUNC, O_APPEND, O_NONBLOCK, O_SYNC, FASYNC, O_DIRECT, O_LARGEFILE, O_DIRECTORY, O_NOFOLLOW, O_NOATIME.

	
 mode

 	
 Specifies the permission bits to be used for a new file when O_CREAT is used.

	
 stripe_size

 	
 Specifies stripe size (in bytes). Should be multiple of 64 KB, not exceeding 4 GB.

	
 stripe_offset

 	
 Specifies an OST index from which the file should start. The default value is -1.

	
 stripe_count

 	
 Specifies the number of OSTs to stripe the file across. The default value is -1.

	
 stripe_pattern

 	
 Specifies the striping pattern. In this release of the Lustre software, only
 LOV_PATTERN_RAID0 is available. The default value is
 0.

41.3.3. Return Values

llapi_file_open() and llapi_file_create() return:
>=0 On success, for llapi_file_open the return value is a file descriptor
<0 On failure, the absolute value is an error code

41.3.4. Errors

	
 Errors

 	
 Description

	
 EINVAL

 	
 stripe_size or stripe_offset or stripe_count or stripe_pattern is invalid.

	
 EEXIST

 	
 Striping information has already been set and cannot be altered; name already exists.

	
 EALREADY

 	
 Striping information has already been set and cannot be altered

	
 ENOTTY

 	

 name may not point to a Lustre file system.

41.3.5. Example

#include <stdio.h>
#include <lustre/lustreapi.h>

int main(int argc, char *argv[])
{
	int rc;
	if (argc != 2)
		return -1;
	rc = llapi_file_create(argv[1], 1048576, 0, 2, LOV_PATTERN_RAID0);
	if (rc < 0) {
		fprintf(stderr, "file creation has failed, %s\n", strerror(-rc));
		return -1;
	}
	printf("%s with stripe size 1048576, striped across 2 OSTs,"
			" has been created!\n", argv[1]);
	return 0;
}

41.4.
 llapi_quotactl

Use llapi_quotactl to manipulate disk quotas on a Lustre file system.
41.4.1. Synopsis

#include <lustre/lustreapi.h>
int llapi_quotactl(char" " *mnt," " struct if_quotactl" " *qctl)

struct if_quotactl {
 __u32 qc_cmd;
 __u32 qc_type;
 __u32 qc_id;
 __u32 qc_stat;
 struct obd_dqinfo qc_dqinfo;
 struct obd_dqblk qc_dqblk;
 char obd_type[16];
 struct obd_uuid obd_uuid;
};
struct obd_dqblk {
 __u64 dqb_bhardlimit;
 __u64 dqb_bsoftlimit;
 __u64 dqb_curspace;
 __u64 dqb_ihardlimit;
 __u64 dqb_isoftlimit;
 __u64 dqb_curinodes;
 __u64 dqb_btime;
 __u64 dqb_itime;
 __u32 dqb_valid;
 __u32 padding;
};
struct obd_dqinfo {
 __u64 dqi_bgrace;
 __u64 dqi_igrace;
 __u32 dqi_flags;
 __u32 dqi_valid;
};
struct obd_uuid {
 char uuid[40];
};

41.4.2. Description

The llapi_quotactl() command manipulates disk quotas on a Lustre file system mount. qc_cmd indicates a command to be applied to UID qc_id or GID qc_id.
	
 Option

 	
 Description

	
 LUSTRE_Q_QUOTAON

 	
 Turns on quotas for a Lustre file system. Deprecated as of 2.4.0.
 qc_type is USRQUOTA,
 GRPQUOTA or UGQUOTA (both user and group
 quota). The quota files must exist. They are normally created with the
 llapi_quotacheck call. This call is restricted to the super
 user privilege. As of 2.4.0, quota is now enabled on a per file system basis via
 lctl conf_param (see Section 25.2, “
 Enabling Disk Quotas”)
 on the MGS node and quotacheck isn't needed any more.

	
 LUSTRE_Q_QUOTAOFF

 	
 Turns off quotas for a Lustre file system. Deprecated as of 2.4.0. qc_type is USRQUOTA, GRPQUOTA or UGQUOTA (both user and group quota). This call is restricted to the super user privilege. As of 2.4.0, quota is disabled via lctl conf_param (see Section 25.2, “
 Enabling Disk Quotas”).

	
 LUSTRE_Q_GETQUOTA

 	
 Gets disk quota limits and current usage for user or group qc_id. qc_type is USRQUOTA or GRPQUOTA. uuid may be filled with OBD UUID string to query quota information from a specific node. dqb_valid may be set nonzero to query information only from MDS. If uuid is an empty string and dqb_valid is zero then cluster-wide limits and usage are returned. On return, obd_dqblk contains the requested information (block limits unit is kilobyte). Quotas must be turned on before using this command.

	
 LUSTRE_Q_SETQUOTA

 	
 Sets disk quota limits for user or group qc_id. qc_type is USRQUOTA or GRPQUOTA. dqb_valid must be set to QIF_ILIMITS, QIF_BLIMITS or QIF_LIMITS (both inode limits and block limits) dependent on updating limits. obd_dqblk must be filled with limits values (as set in dqb_valid, block limits unit is kilobyte). Quotas must be turned on before using this command.

	
 LUSTRE_Q_GETINFO

 	
 Gets information about quotas. qc_type is either
 USRQUOTA or GRPQUOTA. On return,
 dqi_igrace is inode grace time (in seconds),
 dqi_bgrace is block grace time (in seconds),
 dqi_flags is not used by the current release of the Lustre
 software.

	
 LUSTRE_Q_SETINFO

 	
 Sets quota information (like grace times). qc_type is
 either USRQUOTA or GRPQUOTA.
 dqi_igrace is inode grace time (in seconds),
 dqi_bgrace is block grace time (in seconds),
 dqi_flags is not used by the current release of the Lustre
 software and must be zeroed.

41.4.3. Return Values

llapi_quotactl() returns:
0 On success
 -1 On failure and sets error number (errno) to indicate the error

41.4.4. Errors

llapi_quotactl errors are described below.
	
 Errors

 	
 Description

	
 EFAULT

 	
 qctl is invalid.

	
 ENOSYS

 	
 Kernel or Lustre modules have not been compiled with the QUOTA option.

	
 ENOMEM

 	
 Insufficient memory to complete operation.

	
 ENOTTY

 	
 qc_cmd is invalid.

	
 EBUSY

 	
 Cannot process during quotacheck.

	
 ENOENT

 	
 uuid does not correspond to OBD or mnt does not exist.

	
 EPERM

 	
 The call is privileged and the caller is not the super user.

	
 ESRCH

 	
 No disk quota is found for the indicated user. Quotas have not been turned on for this file system.

41.5.
 llapi_path2fid

Use llapi_path2fid to get the FID from the pathname.
41.5.1. Synopsis

#include <lustre/lustreapi.h>

int llapi_path2fid(const char *path, unsigned long long *seq, unsigned long *oid, unsigned long *ver)

41.5.2. Description

The llapi_path2fid function returns the FID (sequence : object ID : version) for the pathname.

41.5.3. Return Values

llapi_path2fid returns:
0 On success
non-zero value On failure

41.6.
 llapi_ladvise

Use llapi_ladvise to give IO advice/hints on a
 Lustre file to the server.
41.6.1. Synopsis

#include <lustre/lustreapi.h>
int llapi_ladvise(int fd, unsigned long long flags,
 int num_advise, struct llapi_lu_ladvise *ladvise);

struct llapi_lu_ladvise {
 __u16 lla_advice; /* advice type */
 __u16 lla_value1; /* values for different advice types */
 __u32 lla_value2;
 __u64 lla_start; /* first byte of extent for advice */
 __u64 lla_end; /* last byte of extent for advice */
 __u32 lla_value3;
 __u32 lla_value4;
};

41.6.2. Description

The llapi_ladvise function passes an array of
 num_advise I/O hints (up to a maximum of
 LAH_COUNT_MAX items) in ladvise for the file
 descriptor fd from an application to one or more
 Lustre servers. Optionally, flags can modify how
 the advice will be processed via bitwise-or'd values:
	LF_ASYNC: Clients return to userspace
 immediately after submitting ladvise RPCs, leaving server threads to
 handle the advices asynchronously.

	LF_UNSET: Unset/clear a previous advice
 (Currently only supports LU_ADVISE_LOCKNOEXPAND).

Each of the ladvise elements is an
 llapi_lu_ladvise structure, which contains the
 following fields:

	
 Field

 	
 Description

	
 lla_ladvice

 	
 Specifies the advice for the given file range, currently
 one of:

 LU_LADVISE_WILLREAD: Prefetch data
 into server cache using optimum I/O size for the server.

 LU_LADVISE_DONTNEED: Clean cached data
 for the specified file range(s) on the server.

	
 lla_start

 	
 The offset in bytes for the start of this advice.

	
 lla_end

 	
 The offset in bytes (non-inclusive) for the end of this
 advice.

	
 lla_value1

 lla_value2

 lla_value3

 lla_value4

 	
 Additional arguments for future advice types and
 should be set to zero if not explicitly required for a given
 advice type. Advice-specific names for these fields
 follow.

	
 lla_lockahead_mode

 	
 When using LU_ADVISE_LOCKAHEAD, the 'lla_value1' field
 is used to communicate the requested lock mode, and can be
 referred to as lla_lockahead_mode.

	
 lla_peradvice_flags

 	
 When using advices which support them, the 'lla_value2'
 field is used to communicate per-advice flags and can be
 referred to as 'lla_peradvice_flags'. Both LF_ASYNC and
 LF_UNSET are supported as peradvice flags.

	
 lla_lockahead_result

 	
 When using LU_ADVISE_LOCKAHEAD, the 'lla_value3' field
 is used to communicate the result of the request, and can be
 referred to as lla_lockahead_result.

llapi_ladvise() forwards the advice to Lustre
 servers without guaranteeing how and when servers will react to the
 advice. Actions may or may not be triggered when the advices are
 received, depending on the type of the advice as well as the real-time
 decision of the affected server-side components.

 A typical usage of llapi_ladvise() is to
 enable applications and users (via lfs ladvise)
 with external knowledge about application I/O patterns to intervene in
 server-side I/O handling. For example, if a group of different clients
 are doing small random reads of a file, prefetching pages into OSS
 cache with big linear reads before the random IO is an overall net
 benefit. Fetching that data into each client cache with
 fadvise() may not be beneficial, due to much more
 data being sent to the clients.

 LU_LADVISE_LOCKAHEAD merits a special comment. While it is possible
 and encouraged to use it directly in your application to avoid lock
 contention (primarily for writing to a single file from multiple
 clients), it will also be available in the MPI-I/O / MPICH library
 from ANL for use with the i/o aggregation mode of that library. This
 is intended (eventually) to be the primary way this feature is used.

 At the time of writing, this support is proposed as a patch but is
 not yet merged in to the public ANL code base. Users are encouraged
 to check their MPICH documentation and/or check with their library
 provider about support.

While conceptually similar to the
 posix_fadvise and Linux
 fadvise system calls, the main difference of
 llapi_ladvise() is that
 fadvise() / posix_fadvise() are client side
 mechanisms that do not pass advice to the filesystem, while
 llapi_ladvise() sends advice or hints to one or
 more Lustre servers on which the file is stored. In some cases it may
 be desirable to use both interfaces.

41.6.3. Return Values

llapi_ladvise returns:
0 On success
-1 if an error occurred (in which case, errno
 is set appropriately).

41.6.4. Errors

	
 Error

 	
 Description

	
 ENOMEM

 	
 Insufficient memory to complete operation.

	
 EINVAL

 	
 One or more invalid arguments are given.

	
 EFAULT

 	
 Memory region pointed by
 ladvise is not properly mapped.

	
 ENOTSUPP

 	
 Advice type is not supported.

41.7. Example Using the llapi Library

Use llapi_file_create to set Lustre software properties for a new file.
 For a synopsis and description of llapi_file_create and examples of how to
 use it, see Chapter 42, Configuration Files and Module Parameters.
You can set striping from inside programs like ioctl. To compile the sample program, you need to install the Lustre client source RPM.
A simple C program to demonstrate striping API - libtest.c

/* -*- mode: c; c-basic-offset: 8; indent-tabs-mode: nil; -*-
 * vim:expandtab:shiftwidth=8:tabstop=8:
 *
 * lustredemo - a simple example of lustreapi functions
 */
#include <stdio.h>
#include <fcntl.h>
#include <dirent.h>
#include <errno.h>
#include <stdlib.h>
#include <lustre/lustreapi.h>
#define MAX_OSTS 1024
#define LOV_EA_SIZE(lum, num) (sizeof(*lum) + num * sizeof(*lum->lmm_objects))
#define LOV_EA_MAX(lum) LOV_EA_SIZE(lum, MAX_OSTS)

/*
 * This program provides crude examples of using the lustreapi API functions
 */
/* Change these definitions to suit */

#define TESTDIR "/tmp" /* Results directory */
#define TESTFILE "lustre_dummy" /* Name for the file we create/destroy */
#define FILESIZE 262144 /* Size of the file in words */
#define DUMWORD "DEADBEEF" /* Dummy word used to fill files */
#define MY_STRIPE_WIDTH 2 /* Set this to the number of OST required */
#define MY_LUSTRE_DIR "/mnt/lustre/ftest"

int close_file(int fd)
{
 if (close(fd) < 0) {
 fprintf(stderr, "File close failed: %d (%s)\n", errno, strerror(errno));
 return -1;
 }
 return 0;
}

int write_file(int fd)
{
 char *stng = DUMWORD;
 int cnt = 0;

 for(cnt = 0; cnt < FILESIZE; cnt++) {
 write(fd, stng, sizeof(stng));
 }
 return 0;
}
/* Open a file, set a specific stripe count, size and starting OST
 * Adjust the parameters to suit */
int open_stripe_file()
{
 char *tfile = TESTFILE;
 int stripe_size = 65536; /* System default is 4M */
 int stripe_offset = -1; /* Start at default */
 int stripe_count = MY_STRIPE_WIDTH; /*Single stripe for this demo*/
 int stripe_pattern = 0; /* only RAID 0 at this time */
 int rc, fd;

 rc = llapi_file_create(tfile,
 stripe_size,stripe_offset,stripe_count,stripe_pattern);
 /* result code is inverted, we may return -EINVAL or an ioctl error.
 * We borrow an error message from sanity.c
 */
 if (rc) {
 fprintf(stderr,"llapi_file_create failed: %d (%s) \n", rc, strerror(-rc));
 return -1;
 }
 /* llapi_file_create closes the file descriptor, we must re-open */
 fd = open(tfile, O_CREAT | O_RDWR | O_LOV_DELAY_CREATE, 0644);
 if (fd < 0) {
 fprintf(stderr, "Can't open %s file: %d (%s)\n", tfile, errno, strerror(errno));
 return -1;
 }
 return fd;
}

/* output a list of uuids for this file */
int get_my_uuids(int fd)
{
 struct obd_uuid uuids[1024], *uuidp; /* Output var */
 int obdcount = 1024;
 int rc,i;

 rc = llapi_lov_get_uuids(fd, uuids, &obdcount);
 if (rc != 0) {
 fprintf(stderr, "get uuids failed: %d (%s)\n",errno, strerror(errno));
 }
 printf("This file system has %d obds\n", obdcount);
 for (i = 0, uuidp = uuids; i < obdcount; i++, uuidp++) {
 printf("UUID %d is %s\n",i, uuidp->uuid);
 }
 return 0;
}

/* Print out some LOV attributes. List our objects */
int get_file_info(char *path)
{

 struct lov_user_md *lump;
 int rc;
 int i;

 lump = malloc(LOV_EA_MAX(lump));
 if (lump == NULL) {
 return -1;
 }

 rc = llapi_file_get_stripe(path, lump);

 if (rc != 0) {
 fprintf(stderr, "get_stripe failed: %d (%s)\n",errno, strerror(errno));
 return -1;
 }

 printf("Lov magic %u\n", lump->lmm_magic);
 printf("Lov pattern %u\n", lump->lmm_pattern);
 printf("Lov object id %llu\n", lump->lmm_object_id);
 printf("Lov stripe size %u\n", lump->lmm_stripe_size);
 printf("Lov stripe count %hu\n", lump->lmm_stripe_count);
 printf("Lov stripe offset %u\n", lump->lmm_stripe_offset);
 for (i = 0; i < lump->lmm_stripe_count; i++) {
 printf("Object index %d Objid %llu\n", lump->lmm_objects[i].l_ost_idx, lump->lmm_objects[i].l_object_id);
 }

 free(lump);
 return rc;

}

/* Ping all OSTs that belong to this filesystem */
int ping_osts()
{
 DIR *dir;
 struct dirent *d;
 char osc_dir[100];
 int rc;

 sprintf(osc_dir, "/proc/fs/lustre/osc");
 dir = opendir(osc_dir);
 if (dir == NULL) {
 printf("Can't open dir\n");
 return -1;
 }
 while((d = readdir(dir)) != NULL) {
 if (d->d_type == DT_DIR) {
 if (! strncmp(d->d_name, "OSC", 3)) {
 printf("Pinging OSC %s ", d->d_name);
 rc = llapi_ping("osc", d->d_name);
 if (rc) {
 printf(" bad\n");
 } else {
 printf(" good\n");
 }
 }
 }
 }
 return 0;

}

int main()
{
 int file;
 int rc;
 char filename[100];
 char sys_cmd[100];

 sprintf(filename, "%s/%s",MY_LUSTRE_DIR, TESTFILE);

 printf("Open a file with striping\n");
 file = open_stripe_file();
 if (file < 0) {
 printf("Exiting\n");
 exit(1);
 }
 printf("Getting uuid list\n");
 rc = get_my_uuids(file);
 printf("Write to the file\n");
 rc = write_file(file);
 rc = close_file(file);
 printf("Listing LOV data\n");
 rc = get_file_info(filename);
 printf("Ping our OSTs\n");
 rc = ping_osts();

 /* the results should match lfs getstripe */
 printf("Confirming our results with lfs getstripe\n");
 sprintf(sys_cmd, "/usr/bin/lfs getstripe %s/%s", MY_LUSTRE_DIR, TESTFILE);
 system(sys_cmd);

 printf("All done\n");
 exit(rc);
}

Makefile for sample application:

gcc -g -O2 -Wall -o lustredemo libtest.c -llustreapi
clean:
rm -f core lustredemo *.o
run:
make
rm -f /mnt/lustre/ftest/lustredemo
rm -f /mnt/lustre/ftest/lustre_dummy
cp lustredemo /mnt/lustre/ftest/

41.7.1. See Also

	
 Section 41.1, “
 llapi_file_create
 ”

	
 Section 41.2, “llapi_file_get_stripe”

	
 Section 41.3, “
 llapi_file_open
 ”

	
 Section 41.4, “
 llapi_quotactl
 ”

Chapter 42. Configuration Files and Module Parameters

This section describes configuration files and module parameters and includes the following sections:
	Section 42.1, “

 Introduction”

	Section 42.2, “

 Module Options”

42.1.

 Introduction

LNet network hardware and routing are now configured via module parameters. Parameters should be specified in the /etc/modprobe.d/lustre.conffile, for example:
options lnet networks=tcp0(eth2)
The above option specifies that this node should use the TCP protocol on the eth2 network interface.
Module parameters are read when the module is first loaded. Type-specific LND modules (for instance, ksocklnd) are loaded automatically by the LNet module when LNet starts (typically upon modprobe ptlrpc).
LNet configuration parameters can be viewed under /sys/module/lnet/parameters/, and LND-specific parameters under the name of the corresponding LND, for example /sys/module/ksocklnd/parameters/ for the socklnd (TCP) LND.
For the following parameters, default option settings are shown in parenthesis. Changes to parameters marked with a W affect running systems. Unmarked parameters can only be set when LNet loads for the first time. Changes to parameters marked with Wc only have effect when connections are established (existing connections are not affected by these changes.)

42.2.

 Module Options

	With routed or other multi-network configurations, use ip2nets rather than networks, so all nodes can use the same configuration.

	For a routed network, use the same 'routes' configuration everywhere. Nodes specified as routers automatically enable forwarding and any routes that are not relevant to a particular node are ignored. Keep a common configuration to guarantee that all nodes have consistent routing tables.

	A separate lustre.conf file makes distributing the configuration much easier.

	If you set config_on_load=1, LNet starts at
 modprobe time rather than waiting for the Lustre file system to
 start. This ensures routers start working at module load time.

lctl
lctl> net down
	Remember the lctl ping {nid} command - it is a handy way to check your LNet configuration.

42.2.1.
LNet Options

This section describes LNet options.
42.2.1.1.
Network Topology

Network topology module parameters determine which networks a node should join, whether it should route between these networks, and how it communicates with non-local networks.
Here is a list of various networks and the supported software stacks:
	
 Network

 	
 Software Stack

	
 o2ib

 	
 OFED Version 2

Note
The Lustre software ignores the loopback interface (lo0), but the
 Lustre file system uses any IP addresses aliased to the loopback (by default). When in
 doubt, explicitly specify networks.

ip2nets ("") is a string that lists globally-available networks, each with a set of IP address ranges. LNet determines the locally-available networks from this list by matching the IP address ranges with the local IPs of a node. The purpose of this option is to be able to use the same modules.conf file across a variety of nodes on different networks. The string has the following syntax.
<ip2nets> :== <net-match> [<comment>] { <net-sep> <net-match> }
<net-match> :== [<w>] <net-spec> <w> <ip-range> { <w> <ip-range> }
[<w>]
<net-spec> :== <network> ["(" <interface-list> ")"]
<network> :== <nettype> [<number>]
<nettype> :== "tcp" | "elan" | "o2ib" | ...
<iface-list> :== <interface> ["," <iface-list>]
<ip-range> :== <r-expr> "." <r-expr> "." <r-expr> "." <r-expr>
<r-expr> :== <number> | "*" | "[" <r-list> "]"
<r-list> :== <range> ["," <r-list>]
<range> :== <number> ["-" <number> ["/" <number>]]
<comment :== "#" { <non-net-sep-chars> }
<net-sep> :== ";" | "\n"
<w> :== <whitespace-chars> { <whitespace-chars> }

<net-spec> contains enough information to
 uniquely identify the network and load an appropriate LND. The LND
 determines the missing "address-within-network" part of the
 NID based on the interfaces it can use.
<iface-list> specifies which hardware
 interface the network can use. If omitted, all interfaces are used. LNDs
 that do not support the <iface-list> syntax
 cannot be configured to use particular interfaces and just use what is
 there. Only a single instance of these LNDs can exist on a node at any
 time, and <iface-list> must be omitted.
<net-match> entries are scanned in the
 order declared to see if one of the node's IP addresses matches one
 of the <ip-range> expressions. If there is a
 match, <net-spec> specifies the network to
 instantiate. Note that it is the first match for a particular network
 that counts. This can be used to simplify the match expression for the
 general case by placing it after the special cases. For example:
ip2nets="tcp(eth1,eth2) 134.32.1.[4-10/2]; tcp(eth1) *.*.*.*"
4 nodes on the 134.32.1.* network have 2 interfaces
 (134.32.1.{4,6,8,10}) but all the rest have 1.
ip2nets="o2ib 192.168.0.*; tcp(eth2) 192.168.0.[1,7,4,12]"
This describes an IB cluster on 192.168.0.*. Four of these nodes
 also have IP interfaces; these four could be used as routers.
Note that match-all expressions (For instance,
 ..*.*) effectively mask all other
 <net-match> entries specified after
 them. They should be used with caution.
Here is a more complicated situation, the route parameter is
 explained below. We have:
	Two TCP subnets

	One Elan subnet

	One machine set up as a router, with both TCP and Elan
 interfaces

	IP over Elan configured, but only IP will be used to label the
 nodes.

options lnet ip2nets=â€tcp 198.129.135.* 192.128.88.98; \
 elan 198.128.88.98 198.129.135.3; \
 routes='cp 1022@elan # Elan NID of router; \
 elan 198.128.88.98@tcp # TCP NID of router '

42.2.1.2.
 networks ("tcp")

This is an alternative to "ip2nets"
 which can be used to specify the networks to be instantiated explicitly.
 The syntax is a simple comma separated list of
 <net-spec>s (see above). The default is only
 used if neither 'ip2nets' nor 'networks' is
 specified.

42.2.1.3.
routes ("")

This is a string that lists networks and the NIDs of routers that forward to them.
It has the following syntax (<w> is one or more whitespace characters):
<routes> :== <route>{ ; <route> }
<route> :== [<net>[<w><hopcount>]<w><nid>[:<priority>]{<w><nid>[:<priority>]}
Note: the priority parameter was added in release 2.5.
So a node on the network tcp1 that needs to go through a router to get to the Elan network:
options lnet networks=tcp1 routes="elan 1 192.168.2.2@tcpA"
The hopcount and priority numbers are used to help choose the best path between multiply-routed configurations.
A simple but powerful expansion syntax is provided, both for target networks and router NIDs as follows.
<expansion> :== "[" <entry> { "," <entry> } "]"
<entry> :== <numeric range> | <non-numeric item>
<numeric range> :== <number> ["-" <number> ["/" <number>]]
The expansion is a list enclosed in square brackets. Numeric items in the list may be a single number, a contiguous range of numbers, or a strided range of numbers. For example, routes="elan 192.168.1.[22-24]@tcp" says that network elan0 is adjacent (hopcount defaults to 1); and is accessible via 3 routers on the tcp0 network (192.168.1.22@tcp, 192.168.1.23@tcp and 192.168.1.24@tcp).
routes="[tcp,o2ib] 2 [8-14/2]@elan"
says that 2 networks (tcp0 and o2ib0) are accessible through 4 routers (8@elan, 10@elan, 12@elan and 14@elan). The hopcount of 2 means that traffic to both these networks will be traversed 2 routers - first one of the routers specified in this entry, then one more.
Duplicate entries, entries that route to a local network, and entries that specify routers on a non-local network are ignored.
Prior to release 2.5, a conflict between equivalent entries was resolved in favor of the route with the shorter hopcount. The hopcount, if omitted, defaults to 1 (the remote network is adjacent)..
Introduced in Lustre 2.5Since 2.5, equivalent entries are resolved in favor of the route with the lowest priority number or shorter hopcount if the priorities are equal. The priority, if omitted, defaults to 0. The hopcount, if omitted, defaults to 1 (the remote network is adjacent).

It is an error to specify routes to the same destination with routers on different local networks.
If the target network string contains no expansions, then the hopcount defaults to 1 and may be omitted (that is, the remote network is adjacent). In practice, this is true for most multi-network configurations. It is an error to specify an inconsistent hop count for a given target network. This is why an explicit hopcount is required if the target network string specifies more than one network.

42.2.1.4.
forwarding ("")

This is a string that can be set either to "enabled" or "disabled" for explicit control of whether this node should act as a router, forwarding communications between all local networks.
A standalone router can be started by simply starting LNet ('modprobe ptlrpc') with appropriate network topology options.
	
 Variable

 	
 Description

	
 acceptor

 	
 The acceptor is a TCP/IP service that some LNDs use to establish communications. If a local network requires it and it has not been disabled, the acceptor listens on a single port for connection requests that it redirects to the appropriate local network. The acceptor is part of the LNet module and configured by the following options:

 	secure - Accept connections only from reserved TCP ports (below 1023).

	all - Accept connections from any TCP port.
Note
This is required for liblustre clients to allow connections on non-privileged ports.

	none - Do not run the acceptor.

	
 accept_port

 (988)

 	
 Port number on which the acceptor should listen for connection requests. All nodes in a site configuration that require an acceptor must use the same port.

	
 accept_backlog

 (127)

 	
 Maximum length that the queue of pending connections may grow to (see listen(2)).

	
 accept_timeout

 (5, W)

 	
 Maximum time in seconds the acceptor is allowed to block while communicating with a peer.

	
 accept_proto_version

 	
 Version of the acceptor protocol that should be used by outgoing connection requests. It defaults to the most recent acceptor protocol version, but it may be set to the previous version to allow the node to initiate connections with nodes that only understand that version of the acceptor protocol. The acceptor can, with some restrictions, handle either version (that is, it can accept connections from both 'old' and 'new' peers). For the current version of the acceptor protocol (version 1), the acceptor is compatible with old peers if it is only required by a single local network.

42.2.1.5.
rnet_htable_size

rnet_htable_size is an integer that indicates how many remote networks the internal LNet hash table is configured to handle. rnet_htable_size is used for optimizing the hash table size and does not put a limit on how many remote networks you can have. The default hash table size when this parameter is not specified is: 128.

42.2.2.
 SOCKLND Kernel TCP/IP LND

The SOCKLND kernel TCP/IP LND (socklnd) is
 connection-based and uses the acceptor to establish communications via sockets with its
 peers.
It supports multiple instances and load balances dynamically over multiple interfaces.
 If no interfaces are specified by the ip2nets or networks module
 parameter, all non-loopback IP interfaces are used. The address-within-network is determined
 by the address of the first IP interface an instance of the socklnd
 encounters.
Consider a node on the 'edge' of an InfiniBand network,
 with a low-bandwidth management Ethernet (eth0), IP
 over IB configured (ipoib0), and a pair of GigE NICs
 (eth1,eth2) providing off-cluster
 connectivity. This node should be configured with '
 networks=o2ib,tcp(eth1,eth2)' to ensure that the
 socklnd ignores the management Ethernet and IPoIB.

	
 Variable

 	
 Description

	

 timeout

 (50,W)

 	
 Time (in seconds) that communications may be stalled before the LND completes
 them with failure.

	

 nconnds

 (4)

 	
 Sets the number of connection daemons.

	

 min_reconnectms

 (1000,W)

 	
 Minimum connection retry interval (in milliseconds). After a failed connection
 attempt, this is the time that must elapse before the first retry. As connections
 attempts fail, this time is doubled on each successive retry up to a maximum of
 'max_reconnectms'.

	

 max_reconnectms

 (6000,W)

 	
 Maximum connection retry interval (in milliseconds).

	

 eager_ack

 (0 on linux,

 1 on darwin,W)

 	
 Boolean that determines whether the socklnd should attempt
 to flush sends on message boundaries.

	

 typed_conns

 (1,Wc)

 	
 Boolean that determines whether the socklnd should use
 different sockets for different types of messages. When clear, all communication
 with a particular peer takes place on the same socket. Otherwise, separate sockets
 are used for bulk sends, bulk receives and everything else.

	

 min_bulk

 (1024,W)

 	
 Determines when a message is considered "bulk".

	

 tx_buffer_size, rx_buffer_size

 (8388608,Wc)

 	
 Socket buffer sizes. Setting this option to zero (0), allows the system to
 auto-tune buffer sizes.

 Warning
Be very careful changing this value as improper sizing can harm
 performance.

	

 nagle

 (0,Wc)

 	
 Boolean that determines if nagle should be enabled. It
 should never be set in production systems.

	

 keepalive_idle

 (30,Wc)

 	
 Time (in seconds) that a socket can remain idle before a keepalive probe is
 sent. Setting this value to zero (0) disables keepalives.

	

 keepalive_intvl

 (2,Wc)

 	
 Time (in seconds) to repeat unanswered keepalive probes. Setting this value to
 zero (0) disables keepalives.

	

 keepalive_count

 (10,Wc)

 	
 Number of unanswered keepalive probes before pronouncing socket (hence peer)
 death.

	

 enable_irq_affinity

 (0,Wc)

 	
 Boolean that determines whether to enable IRQ affinity. The default is zero
 (0).

 When set, socklnd attempts to maximize performance by
 handling device interrupts and data movement for particular (hardware) interfaces
 on particular CPUs. This option is not available on all platforms. This option
 requires an SMP system to exist and produces best performance with multiple NICs.
 Systems with multiple CPUs and a single NIC may see increase in the performance
 with this parameter disabled.

	

 zc_min_frag

 (2048,W)

 	
 Determines the minimum message fragment that should be considered for
 zero-copy sends. Increasing it above the platform's PAGE_SIZE
 disables all zero copy sends. This option is not available on all
 platforms.

Chapter 43. System Configuration Utilities

This chapter includes system configuration utilities and includes the following sections:
	Section 43.1, “
 e2scan”

	Section 43.2, “
l_getidentity”

	Section 43.3, “
lctl”

	Section 43.4, “
ll_decode_filter_fid”

	Section 43.5, “
ll_recover_lost_found_objs”

	Section 43.6, “
llobdstat”

	Section 43.7, “
llog_reader”

	Section 43.8, “
llstat”

	Section 43.9, “
llverdev”

	Section 43.10, “
lshowmount”

	Section 43.11, “
lst”

	Section 43.12, “
lustre_rmmod.sh”

	Section 43.13, “
lustre_rsync”

	Section 43.14, “
mkfs.lustre”

	Section 43.15, “
mount.lustre”

	Section 43.16, “
plot-llstat”

	Section 43.17, “
routerstat”

	Section 43.18, “
tunefs.lustre”

	Section 43.19, “
Additional System Configuration Utilities”

43.1.
 e2scan

The e2scan utility is an ext2 file system-modified inode scan program. The e2scan program uses libext2fs to find inodes with ctime or mtime newer than a given time and prints out their pathname. Use e2scan to efficiently generate lists of files that have been modified. The e2scan tool is included in the e2fsprogs package, located at:
http://downloads.whamcloud.com/public/e2fsprogs/latest/
43.1.1. Synopsis

e2scan [options] [-f file] block_device

43.1.2. Description

When invoked, the e2scan utility iterates all inodes on the block device, finds modified inodes, and prints their inode numbers. A similar iterator, using libext2fs(5), builds a table (called parent database) which lists the parent node for each inode. With a lookup function, you can reconstruct modified pathnames from root.

43.1.3. Options

	
 Option

 	
 Description

	
 -b inode buffer blocks

 	
 Sets the readahead inode blocks to get excellent performance when scanning the block device.

	
 -o output file

 	
 If an output file is specified, modified pathnames are written to this file. Otherwise, modified parameters are written to stdout.

	
 -t inode| pathname

 	
 Sets the e2scan type if type is inode. The e2scan utility prints modified inode numbers to stdout. By default, the type is set as pathname.

 The e2scan utility lists modified pathnames based on modified inode numbers.

	
 -u

 	
 Rebuilds the parent database from scratch. Otherwise, the current parent database is used.

Introduced in Lustre 2.8

43.2.
l_getidentity

The l_getidentity tool normally handles Lustre user/group mapping
 upcall.
43.2.1. Synopsis

l_getidentity { $FSNAME-MDT{xxxx}| -d} {uid}

43.2.2. Description

The l_getidentity utility is called from the
 MDS to map a numeric UID value into the list of supplementary group
 values for that UID, and writes this into the
 mdt.*.identity_info parameter file. The list of
 supplementary groups is cached in the kernel to avoid repeated
 upcalls. See Section 40.1, “User/Group Upcall” for more
 details.
The l_getidentity utility can also be run
 directly for debugging purposes to ensure that the UID mapping for a
 particular user is configured correctly, by using the
 -d argument instead of the MDT name.

43.2.3. Options

	
 Option

 	
 Description

	

 ${FSNAME}-MDT{xxxx}

 	
 Metadata server target name

	
 uid

 	
 User identifier

43.2.4. Files

The l_getidentity files are located at:
/proc/fs/lustre/mdt/${FSNAME}-MDT{xxxx}/identity_upcall

43.3.
lctl

The lctl utility is used for root control and configuration. With lctl you can directly control Lustre via an ioctl interface, allowing various configuration, maintenance and debugging features to be accessed.
43.3.1. Synopsis

lctl [--device devno] command [args]

43.3.2. Description

The lctl utility can be invoked in interactive mode by issuing the lctl command. After that, commands are issued as shown below. The most common lctl commands are:
dl
dk
device
network up|down
list_nids
ping nidhelp
quit
For a complete list of available commands, type help at the lctl prompt. To get basic help on command meaning and syntax, type help command. Command completion is activated with the TAB key (depending on compile options), and command history is available via the up- and down-arrow keys.
For non-interactive use, use the second invocation, which runs the command after connecting to the device.

43.3.3. Setting Parameters with lctl

Lustre parameters are not always accessible using the procfs interface, as it is platform-specific. As a solution, lctl {get,set}_param has been introduced as a platform-independent interface to the Lustre tunables. Avoid direct references to /proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set}_param .
When the file system is running, use the lctl set_param command on the affected node(s) to temporarily set parameters (mapping to items in /proc/{fs,sys}/{lnet,lustre}). The lctl set_param command uses this syntax:
lctl set_param [-n] [-P] [-d] obdtype.obdname.property=value
For example:
mds# lctl set_param mdt.testfs-MDT0000.identity_upcall=NONE
Introduced in Lustre 2.5Use -P option to set parameters permanently. Option -d deletes permanent parameters. For example:
	
mgs# lctl set_param -P mdt.testfs-MDT0000.identity_upcall=NONE
mgs# lctl set_param -P -d mdt.testfs-MDT0000.identity_upcall

Many permanent parameters can be set with lctl conf_param. In general, lctl conf_param can be used to specify any OBD device parameter settable in a /proc/fs/lustre file. The lctl conf_param command must be run on the MGS node, and uses this syntax:
obd|fsname.obdtype.property=value)
For example:
mgs# lctl conf_param testfs-MDT0000.mdt.identity_upcall=NONE
$ lctl conf_param testfs.llite.max_read_ahead_mb=16
Caution
The lctl conf_param command permanently sets parameters in the file system configuration for all nodes of the specified type.

To get current Lustre parameter settings, use the lctl get_param command on the desired node with the same parameter name as lctl set_param:
lctl get_param [-n] obdtype.obdname.parameter
For example:
mds# lctl get_param mdt.testfs-MDT0000.identity_upcall
To list Lustre parameters that are available to set, use the lctl list_param command, with this syntax:
lctl list_param [-R] [-F] obdtype.obdname.*
For example, to list all of the parameters on the MDT:
oss# lctl list_param -RF mdt
For more information on using lctl to set temporary and permanent parameters, see Section 13.11.3, “Setting Parameters with
 lctl”.
Network Configuration
	
 Option

 	
 Description

	
 network up|down|tcp|elan

 	
 Starts or stops LNet, or selects a network type for other lctl LNet commands.

	
 list_nids

 	
 Prints all NIDs on the local node. LNet must be running.

	
 which_nid nidlist

 	
 From a list of NIDs for a remote node, identifies the NID on which interface communication will occur.

	
 ping nid

 	
 Checks LNet connectivity via an LNet ping. This uses the fabric appropriate to the specified NID.

	
 interface_list

 	
 Prints the network interface information for a given network type.

	
 peer_list

 	
 Prints the known peers for a given network type.

	
 conn_list

 	
 Prints all the connected remote NIDs for a given network type.

	
 active_tx

 	
 This command prints active transmits. It is only used for the Elan network type.

	
 route_list

 	
 Prints the complete routing table.

Device Selection
	
 Option

 	

 	
 Description

	
 device devname

 	

 	
 This selects the specified OBD device. All other commands depend on the device being set.

	
 device_list

 	

 	
 Shows the local Lustre OBDs, a/k/a dl.

Device Operations
	
 Option

 	
 Description

	
 list_param [-F|-R] parameter [parameter ...]

 	
 Lists the Lustre or LNet parameter name.

	

 	
 -F

 	
 Adds '/', '@' or '=' for directories, symlinks and writeable files, respectively.

	

 	
 -R

 	
 Recursively lists all parameters under the specified path. If param_path is unspecified, all parameters are shown.

	
 get_param [-n|-N|-F] parameter [parameter ...]

 	
 Gets the value of a Lustre or LNet parameter from the specified path.

	

 	
 -n

 	
 Prints only the parameter value and not the parameter name.

	

 	
 -N

 	
 Prints only matched parameter names and not the values; especially useful when using patterns.

	

 	
 -F

 	
 When -N is specified, adds '/', '@' or '=' for directories, symlinks and writeable files, respectively.

	
 set_param [-n] parameter=value

 	
 Sets the value of a Lustre or LNet parameter from the specified path.

	

 	
 -n

 	
 Disables printing of the key name when printing values.

	
 conf_param [-d] device|fsname parameter=value

 	
 Sets a permanent configuration parameter for any device via the MGS. This command must be run on the MGS node.

 All writeable parameters under lctl list_param (e.g. lctl list_param -F osc.*.* | grep =) can be permanently set using lctl conf_param, but the format is slightly different. For conf_param, the device is specified first, then the obdtype. Wildcards are not supported. Additionally, failover nodes may be added (or removed), and some system-wide parameters may be set as well (sys.at_max, sys.at_min, sys.at_extra, sys.at_early_margin, sys.at_history, sys.timeout, sys.ldlm_timeout). For system-wide parameters, device is ignored.

 For more information on setting permanent parameters and lctl conf_param command examples, see Section 13.11.3.2, “Setting Permanent Parameters” (Setting Permanent Parameters).

	

 	
 -d device|fsname.parameter

 	
 Deletes a parameter setting (use the default value at the next restart). A null value for value also deletes the parameter setting.

	
 activate

 	
 Re-activates an import after the deactivate operation. This setting is only effective until the next restart (see conf_param).

	
 deactivate

 	
 Deactivates an import, in particular meaning do not assign new file stripes to an OSC. Running lctl deactivate on the MDS stops new objects from being allocated on the OST. Running lctl deactivate on Lustre clients causes them to return -EIO when accessing objects on the OST instead of waiting for recovery.

	
 abort_recovery

 	
 Aborts the recovery process on a re-starting MDT or OST.

Note
Lustre tunables are not always accessible using the procfs interface, as it is platform-specific. As a solution, lctl {get,set,list}_param has been introduced as a platform-independent interface to the Lustre tunables. Avoid direct references to /proc/{fs,sys}/{lustre,lnet}. For future portability, use lctl {get,set,list}_param instead.

Virtual Block Device Operations
Lustre can emulate a virtual block device upon a regular file. This emulation is needed when you are trying to set up a swap space via the file.
	
 Option

 	
 Description

	
 blockdev_attach filename /dev/lloop_device

 	
 Attaches a regular Lustre file to a block device. If the device node does not exist, lctl creates it. It is recommend that a device node is created by lctl since the emulator uses a dynamical major number.

	
 blockdev_detach /dev/lloop_device

 	
 Detaches the virtual block device.

	
 blockdev_info /dev/lloop_device

 	
 Provides information about the Lustre file attached to the device node.

Changelogs
	
 Option

 	
 Description

	
 changelog_register

 	
 Registers a new changelog user for a particular device.
 Changelog entries are saved persistently on the MDT with each
 filesystem operation, and are only purged beyond all registered
 user's minimum set point (see
 lfs changelog_clear). This may cause the
 Changelog to consume a large amount of space, eventually
 filling the MDT, if a changelog user is registered but never
 consumes those records.

	
 changelog_deregister id

 	
 Unregisters an existing changelog user. If the
 user's "clear" record number is the minimum for
 the device, changelog records are purged until the next minimum.

Debug
	
 Option

 	
 Description

	
 debug_daemon

 	
 Starts and stops the debug daemon, and controls the output filename and size.

	
 debug_kernel [file] [raw]

 	
 Dumps the kernel debug buffer to stdout or a file.

	
 debug_file input_file [output_file]

 	
 Converts the kernel-dumped debug log from binary to plain text format.

	
 clear

 	
 Clears the kernel debug buffer.

	
 mark text

 	
 Inserts marker text in the kernel debug buffer.

	
 filter subsystem_id|debug_mask

 	
 Filters kernel debug messages by subsystem or mask.

	
 show subsystem_id|debug_mask

 	
 Shows specific types of messages.

	
 debug_list subsystems|types

 	
 Lists all subsystem and debug types.

	
 modules path

 	
 Provides GDB-friendly module information.

43.3.4. Options

Use the following options to invoke lctl.
	
 Option

 	
 Description

	
 --device

 	
 Device to be used for the operation (specified by name or number). See device_list.

	
 --ignore_errors | ignore_errors

 	
 Ignores errors during script processing.

43.3.5. Examples

lctl
$ lctl
lctl > dl
 0 UP mgc MGC192.168.0.20@tcp btbb24e3-7deb-2ffa-eab0-44dffe00f692 5
 1 UP ost OSS OSS_uuid 3
 2 UP obdfilter testfs-OST0000 testfs-OST0000_UUID 3
lctl > dk /tmp/log Debug log: 87 lines, 87 kept, 0 dropped.
lctl > quit

43.3.6. See Also

	 Section 43.14, “
mkfs.lustre”

	 Section 43.15, “
mount.lustre”

	 Section 43.3, “
lctl”

	 Section 39.1, “

 lfs
 ”

43.4.
ll_decode_filter_fid

The ll_decode_filter_fid utility displays the Lustre object ID and MDT parent FID.
43.4.1. Synopsis

ll_decode_filter_fid object_file [object_file ...]

43.4.2. Description

The ll_decode_filter_fid utility decodes and prints the Lustre OST object ID, MDT FID,
 stripe index for the specified OST object(s), which is stored in the "trusted.fid"
 attribute on each OST object. This is accessible to ll_decode_filter_fid
 when the OST file system is mounted locally as type ldiskfs for maintenance.
The "trusted.fid" extended attribute is stored on each OST object when it is first modified (data written or attributes set), and is not accessed or modified by Lustre after that time.
The OST object ID (objid) is useful in case of OST directory corruption, though normally the ll_recover_lost_found_objs(8) utility is able to reconstruct the entire OST object directory hierarchy. The MDS FID can be useful to determine which MDS inode an OST object is (or was) used by. The stripe index can be used in conjunction with other OST objects to reconstruct the layout of a file even if the MDT inode was lost.

43.4.3. Examples

root@oss1# cd /mnt/ost/lost+found
root@oss1# ll_decode_filter_fid #12345[4,5,8]
#123454: objid=690670 seq=0 parent=[0x751c5:0xfce6e605:0x0]
#123455: objid=614725 seq=0 parent=[0x18d11:0xebba84eb:0x1]
#123458: objid=533088 seq=0 parent=[0x21417:0x19734d61:0x0]
This shows that the three files in lost+found have decimal object IDs - 690670, 614725, and 533088, respectively. The object sequence number (formerly object group) is 0 for all current OST objects.
The MDT parent inode FIDs are hexadecimal numbers of the form sequence:oid:idx. Since the sequence number is below 0x100000000 in all these cases, the FIDs are in the legacy Inode and Generation In FID (IGIF) namespace and are mapped directly to the MDT inode = seq and generation = oid values; the MDT inodes are 0x751c5, 0x18d11, and 0x21417 respectively. For objects with MDT parent sequence numbers above 0x200000000, this indicates that the FID needs to be mapped via the MDT Object Index (OI) file on the MDT to determine the internal inode number.
The idx field shows the stripe number of this OST object in the Lustre RAID-0 striped file.

43.4.4. See Also

Section 43.5, “
ll_recover_lost_found_objs”

43.5.
ll_recover_lost_found_objs

The ll_recover_lost_found_objs utility was
 used to help recover Lustre OST objects (file data) from the
 lost+found directory of an OST and return them to
 their correct locations based on information stored in the
 trusted.fid extended attribute stored on every
 OST object containing data.
Introduced in Lustre 2.6Note
This utility is not needed with Lustre 2.6
 and later, and is removed in Lustre 2.8 since LFSCK
 online scanning will automatically move objects from
 lost+found to the proper place in the OST.

Introduced in Lustre 2.5Note
The ll_recover_lost_found_objs tool is not
 strictly necessary to bring an OST back online, it just avoids losing
	access to objects that were moved to the lost+found directory due to
	directory corruption on the OST.

43.5.1. Synopsis

$ ll_recover_lost_found_objs [-hv] -d directory

43.5.2. Description

The first time Lustre modifies an object, it saves the MDS inode number and the objid as an extended attribute on the object, so in case of directory corruption of the OST, it is possible to recover the objects. Running e2fsck fixes the corrupted OST directory, but it puts all of the objects into a lost and found directory, where they are inaccessible to Lustre. Use the ll_recover_lost_found_objs utility to recover all (or at least most) objects from a lost and found directory and return them to the O/0/d* directories.
To use ll_recover_lost_found_objs, mount the file system locally (using the -t ldiskfs, or -t zfs command), run the utility and then unmount it again. The OST must not be mounted by Lustre when ll_recover_lost_found_objs is run.

43.5.3. Options

	
 Option

 	
 Description

	
 -h

 	
 Prints a help message

	
 -v

 	
 Increases verbosity

	
 -d directory

 	
 Sets the lost and found directory path

43.5.4. Example

ll_recover_lost_found_objs -d /mnt/ost/lost+found

43.6.
llobdstat

The llobdstat utility displays OST statistics.
43.6.1. Synopsis

llobdstat ost_name [interval]

43.6.2. Description

The llobdstat utility displays a line of OST statistics for the given ost_name every interval seconds. It should be run directly on an OSS node. Type CTRL-C to stop statistics printing.

43.6.3. Example

llobdstat liane-OST0002 1
/usr/bin/llobdstat on /proc/fs/lustre/obdfilter/liane-OST0002/stats
Processor counters run at 2800.189 MHz
Read: 1.21431e+07, Write: 9.93363e+08, create/destroy: 24/1499, stat: 34, p\
unch: 18
[NOTE: cx: create, dx: destroy, st: statfs, pu: punch]
Timestamp Read-delta ReadRate Write-delta WriteRate
--
1217026053 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026054 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026055 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026056 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026057 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026058 0.00MB 0.00MB/s 0.00MB 0.00MB/s
1217026059 0.00MB 0.00MB/s 0.00MB 0.00MB/s st:1

43.6.4. Files

/proc/fs/lustre/obdfilter/ostname/stats

43.7.
llog_reader

The llog_reader utility translates a Lustre configuration log into human-readable form.
43.7.1. Synopsis

llog_reader filename

43.7.2. Description

The llog_reader utility parses the binary format of Lustre's on-disk configuration logs. Llog_reader can only read logs; use tunefs.lustre to write to them.
To examine a log file on a stopped Lustre server, mount its backing file system as ldiskfs or zfs, then use llog_reader to dump the log file's contents, for example:
mount -t ldiskfs /dev/sda /mnt/mgs
llog_reader /mnt/mgs/CONFIGS/tfs-client
To examine the same log file on a running Lustre server, use the ldiskfs-enabled debugfs utility (called debug.ldiskfs on some distributions) to extract the file, for example:
debugfs -c -R 'dump CONFIGS/tfs-client /tmp/tfs-client' /dev/sda
llog_reader /tmp/tfs-client
Caution
Although they are stored in the CONFIGS directory, mountdata files do not use the configuration log format and will confuse the llog_reader utility.

43.7.3. See Also

Section 43.18, “
tunefs.lustre”

43.8.
llstat

The llstat utility displays Lustre statistics.
43.8.1. Synopsis

llstat [-c] [-g] [-i interval] stats_file

43.8.2. Description

The llstat utility displays statistics from any of the Lustre statistics files that share a common format and are updated at interval seconds. To stop statistics printing, use ctrl-c.

43.8.3. Options

	
 Option

 	
 Description

	
 -c

 	
 Clears the statistics file.

	
 -i

 	
 Specifies the polling period (in seconds).

	
 -g

 	
 Specifies graphable output format.

	
 -h

 	
 Displays help information.

	
 stats_file

 	
 Specifies either the full path to a statistics file or the shorthand reference, mds or ost

43.8.4. Example

To monitor /proc/fs/lustre/ost/OSS/ost/stats at 1 second intervals, run;
llstat -i 1 ost

43.8.5. Files

The llstat files are located at:
/proc/fs/lustre/mdt/MDS/*/stats
/proc/fs/lustre/mdt/*/exports/*/stats
/proc/fs/lustre/mdc/*/stats
/proc/fs/lustre/ldlm/services/*/stats
/proc/fs/lustre/ldlm/namespaces/*/pool/stats
/proc/fs/lustre/mgs/MGS/exports/*/stats
/proc/fs/lustre/ost/OSS/*/stats
/proc/fs/lustre/osc/*/stats
/proc/fs/lustre/obdfilter/*/exports/*/stats
/proc/fs/lustre/obdfilter/*/stats
/proc/fs/lustre/llite/*/stats

43.9.
llverdev

The llverdev verifies a block device is functioning properly over its full size.
43.9.1. Synopsis

llverdev [-c chunksize] [-f] [-h] [-o offset] [-l] [-p] [-r] [-t timestamp] [-v] [-w] device

43.9.2. Description

Sometimes kernel drivers or hardware devices have bugs that prevent them from accessing the full device size correctly, or possibly have bad sectors on disk or other problems which prevent proper data storage. There are often defects associated with major system boundaries such as 2^32 bytes, 2^31 sectors, 2^31 blocks, 2^32 blocks, etc.
The llverdev utility writes and verifies a unique test pattern across the entire device to ensure that data is accessible after it was written, and that data written to one part of the disk is not overwriting data on another part of the disk.
It is expected that llverdev will be run on large size devices (TB). It is always better to run llverdev in verbose mode, so that device testing can be easily restarted from the point where it was stopped.
Running a full verification can be time-consuming for very large devices. We recommend starting with a partial verification to ensure that the device is minimally sane before investing in a full verification.

43.9.3. Options

	
 Option

 	

 	
 Description

	
 -c|--chunksize

 	
 I/O chunk size in bytes (default value is 1048576).

	
 -f|--force

 	
 Forces the test to run without a confirmation that the device will be overwritten and all data will be permanently destroyed.

	
 -h|--help

 	
 Displays a brief help message.

	
 -o offset

 	
 Offset (in kilobytes) of the start of the test (default value is 0).

	
 -l|--long

 	
 Runs a full check, writing and then reading and verifying every block on the disk.

	
 -p|--partial

 	
 Runs a partial check, only doing periodic checks across the device (1 GB steps).

	
 -r|--read

 	
 Runs the test in read (verify) mode only, after having previously run the test in -w mode.

	
 -t timestamp

 	
 Sets the test start time as printed at the start of a previously-interrupted
 test to ensure that validation data is the same across the entire file system
 (default value is the current time()).

	
 -v|--verbose

 	
 Runs the test in verbose mode, listing each read and write operation.

	
 -w|--write

 	
 Runs the test in write (test-pattern) mode (default runs both read and write).

43.9.4. Examples

Runs a partial device verification on /dev/sda:
llverdev -v -p /dev/sda
llverdev: permanently overwrite all data on /dev/sda (yes/no)? y
llverdev: /dev/sda is 4398046511104 bytes (4096.0 GB) in size
Timestamp: 1009839028
Current write offset: 4096 kB
Continues an interrupted verification at offset 4096kB from the start of the device, using the same timestamp as the previous run:
llverdev -f -v -p --offset=4096 --timestamp=1009839028 /dev/sda
llverdev: /dev/sda is 4398046511104 bytes (4096.0 GB) in size
Timestamp: 1009839028
write complete
read complete

43.10.
lshowmount

The lshowmount utility shows Lustre exports.
43.10.1. Synopsis

lshowmount [-ehlv]

43.10.2. Description

The lshowmount utility shows the hosts that have Lustre mounted to a server. This utility looks for exports from the MGS, MDS, and obdfilter.

43.10.3. Options

	
 Option

 	
 Description

	
 -e|--enumerate

 	
 Causes lshowmount to list each client mounted on a separate line instead of trying to compress the list of clients into a hostrange string.

	
 -h|--help

 	
 Causes lshowmount to print out a usage message.

	
 -l|--lookup

 	
 Causes lshowmount to try to look up the hostname for NIDs that look like IP addresses.

	
 -v|--verbose

 	
 Causes lshowmount to output export information for each service instead of only displaying the aggregate information for all Lustre services on the server.

43.10.4. Files

/proc/fs/lustre/mgs/server/exports/uuid/nid
/proc/fs/lustre/mds/server/exports/uuid/nid
/proc/fs/lustre/obdfilter/server/exports/uuid/nid

43.11.
lst

The lst utility starts LNet self-test.
43.11.1. Synopsis

lst

43.11.2. Description

LNet self-test helps site administrators confirm that Lustre Networking (LNet) has been properly installed and configured. The self-test also confirms that LNet and the network software and hardware underlying it are performing as expected.
Each LNet self-test runs in the context of a session. A node can be associated with only one session at a time, to ensure that the session has exclusive use of the nodes on which it is running. A session is create, controlled and monitored from a single node; this is referred to as the self-test console.
Any node may act as the self-test console. Nodes are named and allocated to a self-test session in groups. This allows all nodes in a group to be referenced by a single name.
Test configurations are built by describing and running test batches. A test batch is a named collection of tests, with each test composed of a number of individual point-to-point tests running in parallel. These individual point-to-point tests are instantiated according to the test type, source group, target group and distribution specified when the test is added to the test batch.

43.11.3. Modules

To run LNet self-test, load these modules: libcfs, lnet, lnet_selftest and any one of the klnds (ksocklnd, ko2iblnd...). To load all necessary modules, run modprobe lnet_selftest, which recursively loads the modules on which lnet_selftest depends.
There are two types of nodes for LNet self-test: the console node and test nodes. Both node types require all previously-specified modules to be loaded. (The userspace test node does not require these modules).
Test nodes can be in either kernel or in userspace. A console user can invite a kernel test node to join the test session by running lst add_group NID, but the user cannot actively add a userspace test node to the test session. However, the console user can passively accept a test node to the test session while the test node runs lst client to connect to the console.

43.11.4. Utilities

LNet self-test includes two user utilities, lst and lstclient.
lst is the user interface for the self-test console (run on the console node). It provides a list of commands to control the entire test system, such as create session, create test groups, etc.
lstclient is the userspace self-test program which is linked with userspace LNDs and LNet. A user can invoke lstclient to join a self-test session:
lstclient -sesid CONSOLE_NID group NAME

43.11.5. Example Script

This is a sample LNet self-test script which simulates the traffic pattern of a set of Lustre servers on a TCP network, accessed by Lustre clients on an IB network (connected via LNet routers), with half the clients reading and half the clients writing.
#!/bin/bash
export LST_SESSION=$$
lst new_session read/write
lst add_group servers 192.168.10.[8,10,12-16]@tcp
lst add_group readers 192.168.1.[1-253/2]@o2ib
lst add_group writers 192.168.1.[2-254/2]@o2ib
lst add_batch bulk_rw
lst add_test --batch bulk_rw --from readers --to servers brw read check\
=simple size=1M
lst add_test --batch bulk_rw --from writers --to servers brw write chec\
k=full size=4K
start running
lst run bulk_rw
display server stats for 30 seconds
lst stat servers & sleep 30; kill $!
tear down
lst end_session

43.12.
lustre_rmmod.sh

The lustre_rmmod.sh utility removes all Lustre and LNet modules (assuming no Lustre services are running). It is located in /usr/bin.
Note
The lustre_rmmod.sh utility does not work if Lustre modules are being used or if you have manually run the lctl network up command.

43.13.
lustre_rsync

The lustre_rsync utility synchronizes (replicates) a Lustre file system to a target file system.
43.13.1. Synopsis

lustre_rsync --source|-s src --target|-t tgt
 --mdt|-m mdt [--user|-u userid]
 [--xattr|-x yes|no] [--verbose|-v]
 [--statuslog|-l log] [--dry-run] [--abort-on-err]

lustre_rsync --statuslog|-l log

lustre_rsync --statuslog|-l log --source|-s source
 --target|-t tgt --mdt|-m mdt

43.13.2. Description

The lustre_rsync utility is designed to synchronize (replicate) a Lustre file system (source) to another file system (target). The target can be a Lustre file system or any other type, and is a normal, usable file system. The synchronization operation is efficient and does not require directory walking, as lustre_rsync uses Lustre MDT changelogs to identify changes in the Lustre file system.
Before using lustre_rsync:
	A changelog user must be registered (see lctl (8) changelog_register)

- AND -
	Verify that the Lustre file system (source) and the replica file system (target) are identical before the changelog user is registered. If the file systems are discrepant, use a utility, e.g. regular rsync (not lustre_rsync) to make them identical.

43.13.3. Options

	
 Option

 	
 Description

	
 --source=src

 	
 The path to the root of the Lustre file system (source) which will be synchronized. This is a mandatory option if a valid status log created during a previous synchronization operation (--statuslog) is not specified.

	
 --target=tgt

 	
 The path to the root where the source file system will be synchronized (target). This is a mandatory option if the status log created during a previous synchronization operation (--statuslog) is not specified. This option can be repeated if multiple synchronization targets are desired.

	
 --mdt=mdt

 	
 The metadata device to be synchronized. A changelog user must be registered for this device. This is a mandatory option if a valid status log created during a previous synchronization operation (--statuslog) is not specified.

	
 --user=userid

 	
 The changelog user ID for the specified MDT. To use lustre_rsync, the changelog user must be registered. For details, see the changelog_register parameter in the lctl man page. This is a mandatory option if a valid status log created during a previous synchronization operation (--statuslog) is not specified.

	
 --statuslog=log

 	
 A log file to which synchronization status is saved. When lustre_rsync starts, the state of a previous replication is read from here. If the status log from a previous synchronization operation is specified, otherwise mandatory options like --source, --target and --mdt options may be skipped. By specifying options like --source, --target and/or --mdt in addition to the --statuslog option, parameters in the status log can be overridden. Command line options take precedence over options in the status log.

	
 --xattryes|no

 	
 Specifies whether extended attributes (xattrs) are synchronized or not. The default is to synchronize extended attributes.

 NOTE: Disabling xattrs causes Lustre striping information not to be synchronized.

	
 --verbose

 	
 Produces a verbose output.

	
 --dry-run

 	
 Shows the output of lustre_rsync commands (copy, mkdir, etc.) on the target file system without actually executing them.

	
 --abort-on-err

 	
 Shows the output of lustre_rsync commands (copy, mkdir, etc.) on the target file system without actually executing them.

43.13.4. Examples

Register a changelog user for an MDT (e.g., MDT lustre-MDT0000).
$ ssh
$ MDS lctl changelog_register \
 --device lustre-MDT0000 -n
cl1
Synchronize/replicate a Lustre file system (/mnt/lustre) to a target file system (/mnt/target).
$ lustre_rsync --source=/mnt/lustre --target=/mnt/target \
 --mdt=lustre-MDT0000 --user=cl1 \
 --statuslog replicate.log --verbose
Lustre filesystem: lustre
MDT device: lustre-MDT0000
Source: /mnt/lustre
Target: /mnt/target
Statuslog: sync.log
Changelog registration: cl1
Starting changelog record: 0
Errors: 0
lustre_rsync took 1 seconds
Changelog records consumed: 22

After the file system undergoes changes, synchronize the changes with the target file system. Only the statuslog name needs to be specified, as it has all the parameters passed earlier.
$ lustre_rsync --statuslog replicate.log --verbose
Replicating Lustre filesystem: lustre
MDT device: lustre-MDT0000
Source: /mnt/lustre
Target: /mnt/target
Statuslog: replicate.log
Changelog registration: cl1
Starting changelog record: 22
Errors: 0
lustre_rsync took 2 seconds
Changelog records consumed: 42
Synchronize a Lustre file system (/mnt/lustre) to two target file systems (/mnt/target1 and /mnt/target2).
$ lustre_rsync --source=/mnt/lustre \
 --target=/mnt/target1 --target=/mnt/target2 \
 --mdt=lustre-MDT0000 --user=cl1
 --statuslog replicate.log

43.13.5. See Also

Section 39.1, “

 lfs
 ”

43.14.
mkfs.lustre

The mkfs.lustre utility formats a disk for a Lustre service.
43.14.1. Synopsis

mkfs.lustre target_type [options] device
where target_type is one of the following:
	
 Option

 	
 Description

	
 --ost

 	
 Object storage target (OST)

	
 --mdt

 	
 Metadata storage target (MDT)

	
 --network=net,...

 	
 Network(s) to which to restrict this OST/MDT. This option can be repeated as necessary.

	
 --mgs

 	
 Configuration management service (MGS), one per site. This service can be
 combined with one --mdt service by specifying both
 types.

43.14.2. Description

mkfs.lustre is used to format a disk device for use as part of a
 Lustre file system. After formatting, a disk can be mounted to start the Lustre service
 defined by this command.
When the file system is created, parameters can simply be added as a
 --param option to the mkfs.lustre command. See Section 13.11.1, “Setting Tunable Parameters with
 mkfs.lustre”.
	
 Option

 	
 Description

	
 --backfstype=fstype

 	
 Forces a particular format for the backing file system such as ldiskfs (the default) or zfs.

	
 --comment=comment

 	
 Sets a user comment about this disk, ignored by the Lustre software.

	
 --device-size=#>KB

 	
 Sets the device size for loop devices.

	
 --dryrun

 	
 Only prints what would be done; it does not affect the disk.

	--servicenode=nid,...	Sets the NID(s) of all service nodes, including primary and failover partner
 service nodes. The --servicenode option cannot be used with
 --failnode option. See Section 11.2, “Preparing a Lustre File System for Failover” for
 more details.
	
 --failnode=nid,...

 	
 Sets the NID(s) of a failover service node for a primary server for a target.
 The --failnode option cannot be used with
 --servicenode option. See Section 11.2, “Preparing a Lustre File System for Failover”
 for more details.
Note
When the --failnode option is used, certain
 restrictions apply (see Section 11.2, “Preparing a Lustre File System for Failover”).

	
 --fsname=filesystem_name

 	
 The Lustre file system of which this service/node will be a part. The default
 file system name is lustre.

 Note
The file system name is limited to 8 characters.

	

 --index=index_number

 	
 Specifies the OST or MDT number (0...N). This allows mapping between the OSS
 and MDS node and the device on which the OST or MDT is located.

	
 --mkfsoptions=opts

 	
 Formats options for the backing file system. For example, ext3 options could be set here.

	
 --mountfsoptions=opts

 	
 Sets the mount options used when the backing file system is mounted.

 Warning
Unlike earlier versions of mkfs.lustre, this version completely replaces
 the default mount options with those specified on the command line, and issues a
 warning on stderr if any default mount options are omitted.

 The defaults for ldiskfs are:

 MGS/MDT: errors=remount-ro,iopen_nopriv,user_xattr

 OST: errors=remount-ro,extents,mballoc

 Introduced in Lustre 2.5OST: errors=remount-ro

 Use care when altering the default mount options.

	
 --network=net,...

 	
 Network(s) to which to restrict this OST/MDT. This option can be repeated as necessary.

	
 --mgsnode=nid,...

 	
 Sets the NIDs of the MGS node, required for all targets other than the MGS.

	
 --param key=value

 	
 Sets the permanent parameter key to value value. This option can be repeated as necessary. Typical options might include:

	

 	
 --param sys.timeout=40>

 	
 System obd timeout.

	

 	
 --param lov.stripesize=2M

 	
 Default stripe size.

	

 	
 param lov.stripecount=2

 	
 Default stripe count.

	

 	
 --param failover.mode=failout

 	
 Returns errors instead of waiting for recovery.

	
 --quiet

 	
 Prints less information.

	
 --reformat

 	
 Reformats an existing Lustre disk.

	
 --stripe-count-hint=stripes

 	
 Used to optimize the MDT's inode size.

	
 --verbose

 	
 Prints more information.

43.14.3. Examples

Creates a combined MGS and MDT for file system testfs on, e.g., node cfs21:
mkfs.lustre --fsname=testfs --mdt --mgs /dev/sda1
Creates an OST for file system testfs on any node (using the above
 MGS):
mkfs.lustre --fsname=testfs --mgsnode=cfs21@tcp0 --ost --index=0 /dev/sdb
Creates a standalone MGS on, e.g., node cfs22:
mkfs.lustre --mgs /dev/sda1
Creates an MDT for file system myfs1 on any node (using the above MGS):
mkfs.lustre --fsname=myfs1 --mdt --mgsnode=cfs22@tcp0 /dev/sda2

43.14.4. See Also

	Section 43.14, “
mkfs.lustre”mkfs.lustre,

	Section 43.15, “
mount.lustre”mount.lustre,

	Section 39.1, “

 lfs
 ”lfs

43.15.
mount.lustre

The mount.lustre utility starts a Lustre client or target service.
43.15.1. Synopsis

mount -t lustre [-o options] device mountpoint

43.15.2. Description

The mount.lustre utility starts a Lustre client or target service. This program should not be called directly; rather, it is a helper program invoked through mount(8), as shown above. Use the umount command to stop Lustre clients and targets.
There are two forms for the device option, depending on whether a client or a target service is started:
	
 Option

 	
 Description

	
 mgsname:/fsname[/subdir]

 	
 Mounts the Lustre file system named
 fsname (optionally starting at
 subdirectory subdir within the
 filesystem, if specified) on the client at the directory
 mountpoint, by contacting the Lustre
 Management Service at mgsname. The
 format for mgsname is defined below. A
 client file system can be listed in fstab(5)
 for automatic mount at boot time, is usable like any local file
 system, and provides a full POSIX standard-compliant interface.

	
 block_device

 	
 Starts the target service defined by the
 mkfs.lustre(8) command on the physical disk
 block_device. The
		block_device may be specified using
		-L label to find
		the first block device with that label (e.g.
		testfs-MDT0000), or by UUID using the
		-U uuid option.
		Care should be taken if there is a device-level backup of the
		target filesystem on the same node, which would have a
		duplicate label and UUID if it has not been changed with
		tune2fs(8) or similar. The mounted target
		service filesystem mounted at
		mountpoint is only useful for
		df(1) operations and appears in
		/proc/mounts to show the device is in use.

43.15.3. Options

	
 Option

 	
 Description

	
 mgsname=mgsnode[:mgsnode]

 	
 mgsname is a colon-separated
 list of mgsnode names where the MGS
 service may run. Multiple mgsnode
 values can be specified if the MGS service is configured for
 HA failover and may be running on any one of the nodes.

	
 mgsnode=mgsnid[,mgsnid]

 	
 Each mgsnode may specify a
 comma-separated list of NIDs, if there are different LNet
 interfaces for that mgsnode.

	
 mgssec=flavor

 	
 Specifies the encryption flavor for the initial network
 RPC connection to the MGS. Non-security flavors are:
 null, plain, and
 gssnull, which respectively disable, or
 have no encryption or integrity features for testing purposes.
 Kerberos flavors are: krb5n,
 krb5a, krb5i, and
 krb5p. Shared-secret key flavors are:
 skn, ska,
 ski, and skpi, see the
 Chapter 28, Configuring Shared-Secret Key
 (SSK) Security for more details. The security
 flavor for client-to-server connections is specified in the
 filesystem configuration that the client fetches from the MGS.

	
 skpath=file|directory

 	
 Introduced in Lustre 2.9
		Path to a file or directory with the keyfile(s) to load for
		this mount command. Keys are inserted into the
		KEY_SPEC_SESSION_KEYRING keyring in the
		kernel with a description containing
		lustre: and a suffix which depends on
		whether the context of the mount command is for an MGS,
		MDT/OST, or client.

	
 exclude=ostlist

 	
 Starts a client or MDT with a colon-separated list of
 known inactive OSTs that it will not try to connect to.

In addition to the standard mount(8) options, Lustre understands
 the following client-specific options:
	
 Option

 	
 Description

	
 always_ping

 	
 Introduced in Lustre 2.9The client will periodically ping the server when it is
 idle, even if the server ptlrpc module
 is configured with the suppress_pings
 option. This allows clients to reliably use the filesystem
 even if they are not part of an external client health
 monitoring mechanism.

	
 flock

 	
 Enables advisory file locking support between
		participating applications using the flock(2)
 system call. This causes file locking to be coherent across all
		client nodes also using this mount option. This is useful if
		applications need coherent userspace file locking across
		multiple client nodes, but also imposes communications overhead
		in order to maintain locking consistency between client nodes.

	
 localflock

 	
 Enables client-local flock(2) support,
		using only client-local advisory file locking. This is faster
		than using the global flock option, and can
		be used for applications that depend on functioning
		flock(2) but run only on a single node.
		It has minimal overhead using only the Linux kernel's locks.

	
 noflock

 	
 Disables flock(2) support entirely,
 and is the default option. Applications calling
 flock(2) get an
 ENOSYS error. It is up to the administrator
 to choose either the localflock or
 flock mount option based on their
 requirements. It is possible to mount clients with different
 options, and only those mounted with flock
 will be coherent amongst each other.

	
 lazystatfs

 	
 Allows statfs(2) (as used by
 df(1) and lfs-df(1)) to
 return even if some OST or MDT is unresponsive or has been
 temporarily or permanently disabled in the configuration.
 This avoids blocking until all of the targets are available.
 This is the default behavior since Lustre 2.9.0.

	
 nolazystatfs

 	
 Requires that statfs(2) block until all
 OSTs and MDTs are available and have returned space usage.

	
 user_xattr

 	
 Enables get/set of extended attributes by regular users
 in the user.* namespace. See the
 attr(5) manual page for more details.

	
 nouser_xattr

 	
 Disables use of extended attributes in the
 user.* namespace by regular users. Root
 and system processes can still use extended attributes.

	
 verbose

 	
 Enable extra mount/umount console messages.

	
 noverbose

 	
 Disable mount/umount console messages.

	
 user_fid2path

 	
 Enable FID-to-path translation by regular users.
		

		Note
This option allows a potential security hole because
 it allows regular users direct access to a file by its Lustre
 File ID. This bypasses POSIX path-based permission checks,
		 and could allow the user to access a file in a directory that
		 they do not have access to. Regular POSIX file mode and ACL
		 permission checks are still performed on the file itself, so
		 users cannot access a file to which they have no permission.

	
 nouser_fid2path

 	
 Disable FID to path translation by
 regular users. Root and processes with
 CAP_DAC_READ_SEARCH can still perform FID
 to path translation.

In addition to the standard mount options and backing disk type
 (e.g. ldiskfs) options, Lustre understands the following server-specific
 mount options:
	
 Option

 	
 Description

	
 nosvc

 	
 Starts the MGC (and MGS, if co-located) for a target service, not the actual service.

	
 nomgs

 	
 Starts only the MDT (with a co-located MGS), without starting the MGS.

	
 abort_recov

 	
 Aborts client recovery on that server and starts the target service immediately.

	
 max_sectors_kb=KB

 	
 Introduced in Lustre 2.10Sets the block device parameter
 max_sectors_kb limit for the MDT or OST
 target being mounted to specified maximum number of kilobytes.
 When max_sectors_kb isn't specified as a
 mount option, it will automatically be set to the
 max_hw_sectors_kb (up to a maximum of 16MiB)
 for that block device. This default behavior is suited for
 most users. When max_sectors_kb=0 is used,
 the current value for this tunable will be kept.

	
 md_stripe_cache_size

 	
 Sets the stripe cache size for server-side disk with a striped RAID configuration.

	
 recovery_time_soft=timeout

 	
 Allows timeout seconds for clients to
 reconnect for recovery after a server crash. This timeout is
 incrementally extended if it is about to expire and the server
 is still handling new connections from recoverable clients.

 The default soft recovery timeout is 3 times the value
 of the Lustre timeout parameter (see
 Section 38.5.2, “Setting Static Timeouts”). The default Lustre
 timeout is 100 seconds, which would make the soft recovery
 timeout default to 300 seconds (5 minutes). The soft recovery
 timeout is set at mount time and will not change if the Lustre
 timeout is changed after mount time.

	
 recovery_time_hard=timeout

 	
 The server is allowed to incrementally extend its timeout
 up to a hard maximum of timeout
 seconds.

 The default hard recovery timeout is 9 times the value
 of the Lustre timeout parameter (see
 Section 38.5.2, “Setting Static Timeouts”). The default Lustre
 timeout is 100 seconds, which would make the hard recovery
 timeout default to 900 seconds (15 minutes). The hard recovery
 timeout is set at mount time and will not change if the Lustre
 timeout is changed after mount time.

	
 noscrub

 	
 Typically the MDT will detect restoration from a
 file-level backup during mount. This mount option prevents
 the OI Scrub from starting automatically when the MDT is
 mounted. Manually starting LFSCK after mounting provides finer
 control over the starting conditions. This mount option also
 prevents OI scrub from occurring automatically when OI
 inconsistency is detected (see
 Section 35.4.4.2, “Auto scrub”).

43.15.4. Examples

Starts a client for the Lustre file system
 chipfs at mount point
 /mnt/chip. The Management Service is running on
 a node reachable from this client via the cfs21@tcp0 NID.
mount -t lustre cfs21@tcp0:/chipfs /mnt/chip
Introduced in Lustre 2.9Similar to the above example, but mounting a
 subdirectory under chipfs as a fileset.

mount -t lustre cfs21@tcp0:/chipfs/v1_0 /mnt/chipv1_0

Starts the Lustre metadata target service from /dev/sda1 on mount point /mnt/test/mdt.
mount -t lustre /dev/sda1 /mnt/test/mdt
Starts the testfs-MDT0000 service (using the disk label), but aborts the recovery process.
mount -t lustre -L testfs-MDT0000 -o abort_recov /mnt/test/mdt

43.15.5. See Also

	 Section 43.14, “
mkfs.lustre”

	 Section 43.18, “
tunefs.lustre”

	 Section 43.3, “
lctl”

	 Section 39.1, “

 lfs
 ”

43.16.
plot-llstat

The plot-llstat utility plots Lustre statistics.
43.16.1. Synopsis

plot-llstat results_filename [parameter_index]

43.16.2. Description

The plot-llstat utility generates a CSV file and instruction files for gnuplot from the output of llstat. Since llstat is generic in nature, plot-llstat is also a generic script. The value of parameter_index can be 1 for count per interval, 2 for count per second (default setting) or 3 for total count.
The plot-llstat utility creates a .dat (CSV) file using the number of operations specified by the user. The number of operations equals the number of columns in the CSV file. The values in those columns are equal to the corresponding value of parameter_index in the output file.
The plot-llstat utility also creates a .scr file that contains instructions for gnuplot to plot the graph. After generating the .dat and .scr files, the plot-llstat tool invokes gnuplot to display the graph.

43.16.3. Options

	
 Option

 	
 Description

	
 results_filename

 	
 Output generated by plot-llstat

	
 parameter_index

 	
 Value of parameter_index can be:

 1 - count per interval

 2 - count per second (default setting)

 3 - total count

43.16.4. Example

llstat -i2 -g -c lustre-OST0000 > log
plot-llstat log 3

43.17.
routerstat

The routerstat utility prints Lustre router statistics.
43.17.1. Synopsis

routerstat [interval]

43.17.2. Description

The routerstat utility displays LNet router statistics. If no interval is specified, then statistics are sampled and printed only one time. Otherwise, statistics are sampled and printed at the specified interval (in seconds).

43.17.3. Output

The routerstat output includes the following fields:
	
 Output

 	
 Description

	
 M

 	
 Number of messages currently being processed by LNet (The maximum number of messages ever processed by LNet concurrently)

	
 E

 	
 Number of LNet errors

	
 S

 	
 Total size (length) of messages sent in bytes/ Number of messages sent

	
 R

 	
 Total size (length) of messages received in bytes/ Number of messages received

	
 F

 	
 Total size (length) of messages routed in bytes/ Number of messages routed

	
 D

 	
 Total size (length) of messages dropped in bytes/ Number of messages dropped

When an interval is specified, additional lines of statistics are printed including the following fields:
	
 Output

 	
 Description

	
 M

 	
 Number of messages currently being processed by LNet (The maximum number of messages ever processed by LNet concurrently)

	
 E

 	
 Number of LNet errors per second

	
 S

 	
 Rate of data sent in Mbytes per second/ Count of messages sent per second

	
 R

 	
 Rate of data received in Mbytes per second/ Count of messages received per second

	
 F

 	
 Rate of data routed in Mbytes per second/ Count of messages routed per second

	
 D

 	
 Rate of data dropped in Mbytes per second/ Count of messages dropped per second

43.17.4. Example

routerstat 1
M 0(13) E 0 S 117379184/4250 R 878480/4356 F 0/0 D 0/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 8.00/ 8 R 0.00/ 16 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 8.00/ 8 R 0.00/ 16 F 0.00/ 0 D 0.00/0
M 0(13) E 0 S 7.00/ 7 R 0.00/ 14 F 0.00/ 0 D 0.00/0
...

43.17.5. Files

The routerstat utility extracts statistics data from:
/proc/sys/lnet/stats

43.18.
tunefs.lustre

The tunefs.lustre utility modifies configuration information on a Lustre target disk.
43.18.1. Synopsis

tunefs.lustre [options] /dev/device

43.18.2. Description

tunefs.lustre is used to modify configuration information on a Lustre target disk. This does not reformat the disk or erase the target information, but modifying the configuration information can result in an unusable file system.
Caution
Changes made here affect a file system only when the target is mounted the next time.

With tunefs.lustre, parameters are "additive" -- new parameters are specified in addition to old parameters, they do not replace them. To erase all old tunefs.lustre parameters and just use newly-specified parameters, run:
$ tunefs.lustre --erase-params --param=new_parameters
The tunefs.lustre command can be used to set any parameter settable in a /proc/fs/lustre file and that has its own OBD device, so it can be specified as {obd|fsname}.obdtype.proc_file_name=value. For example:
$ tunefs.lustre --param mdt.identity_upcall=NONE /dev/sda1

43.18.3. Options

The tunefs.lustre options are listed and explained below.
	
 Option

 	
 Description

	
 --comment=comment

 	
 Sets a user comment about this disk, ignored by Lustre.

	
 --dryrun

 	
 Only prints what would be done; does not affect the disk.

	
 --erase-params

 	
 Removes all previous parameter information.

	
 --servicenode=nid,...	Sets the NID(s) of all service nodes, including primary and failover partner
 service nodes. The --servicenode option cannot be used with
 --failnode option. See Section 11.2, “Preparing a Lustre File System for Failover” for
 more details.
	
 --failnode=nid,...

 	
 Sets the NID(s) of a failover service node for a primary server for a target.
 The --failnode option cannot be used with
 --servicenode option. See Section 11.2, “Preparing a Lustre File System for Failover”
 for more details.
Note
When the --failnode option is used, certain
 restrictions apply (see Section 11.2, “Preparing a Lustre File System for Failover”).

	
 --fsname=filesystem_name

 	
 The Lustre file system of which this service will be a part. The default file
 system name is lustre.

	
 --index=index

 	
 Forces a particular OST or MDT index.

	
 --mountfsoptions=opts

 	
 Sets the mount options used when the backing file system is mounted.

 Warning
 Unlike earlier versions of tunefs.lustre, this version completely replaces the existing mount options with those specified on the command line, and issues a warning on stderr if any default mount options are omitted.

 The defaults for ldiskfs are:

 MGS/MDT: errors=remount-ro,iopen_nopriv,user_xattr

 OST: errors=remount-ro,extents,mballoc

 Introduced in Lustre 2.5OST: errors=remount-ro

 Do not alter the default mount options unless you know what you are doing.

	
 --network=net,...

 	
 Network(s) to which to restrict this OST/MDT. This option can be repeated as necessary.

	
 --mgs

 	
 Adds a configuration management service to this target.

	
 --msgnode=nid,...

 	
 Sets the NID(s) of the MGS node; required for all targets other than the MGS.

	
 --nomgs

 	
 Removes a configuration management service to this target.

	
 --quiet

 	
 Prints less information.

	
 --verbose

 	
 Prints more information.

	
 --writeconf

 	
 Erases all configuration logs for the file system to which this MDT belongs,
 and regenerates them. This is dangerous operation. All clients must be unmounted
 and servers for this file system should be stopped. All targets (OSTs/MDTs) must
 then be restarted to regenerate the logs. No clients should be started until all
 targets have restarted.

 The correct order of operations is:

 	Unmount all clients on the file system

	Unmount the MDT and all OSTs on the file system

	Run tunefs.lustre --writeconf
 device on every server

	Mount the MDT and OSTs

	Mount the clients

43.18.4. Examples

Change the MGS's NID address. (This should be done on each target disk, since they should all contact the same MGS.)
tunefs.lustre --erase-param --mgsnode=new_nid --writeconf /dev/sda
Add a failover NID location for this target.
tunefs.lustre --param="failover.node=192.168.0.13@tcp0" /dev/sda

43.18.5. See Also

	Section 43.14, “
mkfs.lustre”

	Section 43.15, “
mount.lustre”

	Section 43.3, “
lctl”

	Section 39.1, “

 lfs
 ”

43.19.
Additional System Configuration Utilities

This section describes additional system configuration utilities for Lustre.
43.19.1.
Application Profiling Utilities

The following utilities are located in /usr/bin.
lustre_req_history.sh
The lustre_req_history.sh utility (run from a client), assembles as much Lustre RPC request history as possible from the local node and from the servers that were contacted, providing a better picture of the coordinated network activity.

43.19.2. More /proc Statistics for Application Profiling

The following utilities provide additional statistics.
vfs_ops_stats
The client vfs_ops_stats utility tracks Linux VFS operation calls into Lustre for a single PID, PPID, GID or everything.
/proc/fs/lustre/llite/*/vfs_ops_stats
/proc/fs/lustre/llite/*/vfs_track_[pid|ppid|gid]

extents_stats
The client extents_stats utility shows the size distribution of I/O calls from the client (cumulative and by process).
/proc/fs/lustre/llite/*/extents_stats, extents_stats_per_process

offset_stats
The client offset_stats utility shows the read/write seek activity of a client by offsets and ranges.
/proc/fs/lustre/llite/*/offset_stats

Lustre includes per-client and improved MDT statistics:
	 Per-client statistics tracked on the servers

Each MDS and OSS now tracks LDLM and operations statistics for
 every connected client, for comparisons and simpler collection of
 distributed job statistics.
/proc/fs/lustre/mds|obdfilter/*/exports/

	 Improved MDT statistics

More detailed MDT operations statistics are collected for better
 profiling.
/proc/fs/lustre/mdt/*/md_stats

43.19.3.

Testing / Debugging Utilities

Lustre offers the following test and debugging utilities.
43.19.3.1.
lr_reader

The lr_reader utility translates the content of the last_rcvd and reply_data files into human-readable form.
The following utilities are part of the Lustre I/O kit. For more information, see Chapter 32, Benchmarking Lustre File System Performance (Lustre I/O
 Kit).

43.19.3.2. sgpdd-survey

The sgpdd-survey utility tests 'bare metal' performance,
 bypassing as much of the kernel as possible. The sgpdd-survey tool does
 not require Lustre, but it does require the sgp_dd package.
Caution
The sgpdd-survey utility erases all data on the device.

43.19.3.3. obdfilter-survey

The obdfilter-survey utility is a shell script that tests
 performance of isolated OSTS, the network via echo clients, and an end-to-end test.

43.19.3.4. ior-survey

The ior-survey utility is a script used to run the IOR benchmark. Lustre includes IOR version 2.8.6.

43.19.3.5. ost-survey

The ost-survey utility is an OST performance survey that tests
 client-to-disk performance of the individual OSTs in a Lustre file system.

43.19.3.6. stats-collect

The stats-collect utility contains scripts used to collect application profiling information from Lustre clients and servers.

Introduced in Lustre 2.943.19.4. Fileset Feature

 With the fileset feature, Lustre now provides subdirectory mount
 support. Subdirectory mounts, also referred to as filesets, allow a
 client to mount a child directory of a parent filesystem, thereby limiting
 the filesystem namespace visibility on a specific client. A common use
 case is for a client to use a subdirectory mount when there is a desire to
 limit the visibility of the entire filesystem namesapce to aid in the
 prevention of accidental file deletions outside of the subdirectory
 mount.
It is important to note that invocation of the subdirectory mount is
 voluntary by the client and not does prevent access to files that are
 visible in multiple subdirectory mounts via hard links. Furthermore, it
 does not prevent the client from subsequently mounting the whole file
 system without a subdirectory being specified.
Figure 43.1.
 Lustre fileset
[image: Lustre file system fileset feature]

43.19.4.1. Examples

The following example will mount the
 chipfs filesystem on client1 and create a
 subdirectory v1_1 within that filesystem. Client2
 will then mount only the v1_1 subdirectory as a
 fileset, thereby limiting access to anything else in the
 chipfs filesystem from client2.
client1# mount -t lustre mgs@tcp:/chipfs /mnt/chip
client1# mkdir /mnt/chip/v1_1
client2# mount -t lustre mgs@tcp:/chipfs/v1_1 /mnt/chipv1_1
You can check the created mounts in /etc/mtab. It should look like
 the following:
client1
mds@tcp0:/chipfs/ /mnt/chip lustre rw 0 0

client2
mds@tcp0:/chipfs/v1_1 /mnt/chipv1_1 lustre rw 0 0
Create a directory under the /mnt/chip mount, and get its FID
client1# mkdir /mnt/chip/v1_2
client1# lfs path2fid /mnt/chip/v1_2
[0x200000400:0x2:0x0]

If you try resolve the FID of the /mnt/chip/v1_2
 path (as created in the example above) on client2, an error will be returned
 as the FID can not be resolved on client2 since it is not part of the
 mounted fileset on that client. Recall that the fileset on client2 mounted
 the v1_1 subdirectory beneath the top level
 chipfs filesystem.

client2# lfs fid2path /mnt/chip/v1_2 [0x200000400:0x2:0x0]
fid2path: error on FID [0x200000400:0x2:0x0]: No such file or directory
Subdirectory mounts do not have the .lustre
 pseudo directory, which prevents clients from opening or accessing files
 only by FID.
client1# ls /mnt/chipfs/.lustre
 fid lost+found
client2# ls /mnt/chipv1_1/.lustre
 ls: cannot access /mnt/chipv1_1/.lustre: No such file or directory

Chapter 44. LNet Configuration C-API

This section describes the LNet Configuration C-API library. This
 API allows the developer to programatically configure LNet. It provides
 APIs to add, delete and show LNet configuration items listed below. The
 API utilizes IOCTL to communicate with the kernel. Changes take effect
 immediately and do not require restarting LNet. API calls are
 synchronous

	Configuring LNet

	Enabling/Disabling routing

	Adding/removing/showing Routes

	Adding/removing/showing Networks

	Configuring Router Buffer Pools

44.1. General API Information

44.1.1. API Return Code

LUSTRE_CFG_RC_NO_ERR 0
LUSTRE_CFG_RC_BAD_PARAM -1
LUSTRE_CFG_RC_MISSING_PARAM -2
LUSTRE_CFG_RC_OUT_OF_RANGE_PARAM -3
LUSTRE_CFG_RC_OUT_OF_MEM -4
LUSTRE_CFG_RC_GENERIC_ERR -5

44.1.2. API Common Input Parameters

All APIs take as input a sequence number. This is a number
	that's assigned by the caller of the API, and is returned in the
	YAML error return block. It is used to associate the request with
	the response. It is especially useful when configuring via the
	YAML interface, since typically the YAML interface is used to
	configure multiple items. In the
	return Error block, it is desired to know which items were
	configured properly and which were not configured properly. The
	sequence number achieves this purpose.

44.1.3. API Common Output Parameters

44.1.3.1. Internal YAML Representation (cYAML)

Once a YAML block is parsed it needs to be stored
	 structurally in order to facilitate passing it to different
	 functions, querying it and printing it. Also it is required to
	 be able to build this internal representation from data returned
	 from the kernel and return it to the caller, which can query and
	 print it. This structure
	 representation is used for the Error and Show API Out
	 parameters. For this YAML is internally represented via this
	 structure:
typedef enum {
 EN_YAML_TYPE_FALSE = 0,
 EN_YAML_TYPE_TRUE,
 EN_YAML_TYPE_NULL,
 EN_YAML_TYPE_NUMBER,
 EN_YAML_TYPE_STRING,
 EN_YAML_TYPE_ARRAY,
 EN_YAML_TYPE_OBJECT
} cYAML_object_type_t;

typedef struct cYAML {
 /* next/prev allow you to walk array/object chains. */
 struct cYAML *cy_next, *cy_prev;
 /* An array or object item will have a child pointer pointing
 to a chain of the items in the array/object. */
 struct cYAML *cy_child;
 /* The type of the item, as above. */
 cYAML_object_type_t cy_type;
 /* The item's string, if type==EN_YAML_TYPE_STRING */
 char *cy_valuestring;
 /* The item's number, if type==EN_YAML_TYPE_NUMBER */
 int cy_valueint;
 /* The item's number, if type==EN_YAML_TYPE_NUMBER */
 double cy_valuedouble;
 /* The item's name string, if this item is the child of,
 or is in the list of subitems of an object. */
 char *cy_string;
 /* user data which might need to be tracked per object */
 void *cy_user_data;
} cYAML;

44.1.3.2. Error Block

All APIs return a cYAML error block. This error block has
	 the following format, when it's printed out. All configuration
	 errors shall be represented in a YAML sequence
<cmd>:
 - <entity>:
 errno: <error number>
 seqno: <sequence number>
 descr: <error description>

Example:
add:
 - route
 errno: -2
 seqno: 1
 descr: Missing mandatory parameter(s) - network

44.1.3.3. Show Block

All Show APIs return a cYAML show block. This show block
	 represents the information requested in YAML format. Each
	 configuration item has its own YAML syntax. The YAML syntax of
	 all supported configuration items is described later in this
	 document. Below is an example of a show block:
net:
 - nid: 192.168.206.130@tcp4
 status: up
 interfaces:
 0: eth0
 tunables:
 peer_timeout: 10
 peer_credits: 8
 peer_buffer_credits: 30
 credits: 40

44.2. The LNet Configuration C-API

44.2.1. Configuring LNet

/*
 * lustre_lnet_config_ni_system
 * Initialize/Uninitialize the LNet NI system.
 *
 * up - whether to init or uninit the system
 * load_ni_from_mod - load NI from mod params.
 * seq_no - sequence number of the request
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by
 * caller
 */
int lustre_lnet_config_ni_system(bool up, bool load_ni_from_mod,
 int seq_no, struct cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_CONFIGURE or IOC_LIBCFS_UNCONFIGURE
Description:
Configuring LNet

Initialize LNet internals and load any networks specified in the module
 parameter if load_ni_from_mod is set. Otherwise do not
 load any network interfaces.
Unconfiguring LNet
Bring down LNet and clean up network itnerfaces, routes and all LNet
 internals.
Return Value
0: if success
-errno: if failure

44.2.2. Enabling and Disabling Routing

/*
 * lustre_lnet_enable_routing
 * Send down an IOCTL to enable or disable routing
 *
 * enable - 1 to enable routing, 0 to disable routing
 * seq_no - sequence number of the request
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_enable_routing(int enable,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_ENABLE_RTR
Description:
Enabling Routing

The router buffer pools are allocated using the default values. Internally the node
 is then flagged as a Router node. The node can be used as a router from this
 point on.
Disabling Routing
The unused router buffer pools are freed. Buffers currently
	in use are not freed until they are returned to the unused list.
	Internally the node routing flag is turned off. Any subsequent
	messages not destined to this node are dropped.
Enabling Routing on an already enabled
	node, or vice versa
In both these cases the LNet Kernel module ignores this request.
Return Value
-ENOMEM: if there is no memory to allocate buffer pools
0: if success

44.2.3. Adding Routes

/*
 * lustre_lnet_config_route
 * Send down an IOCTL to the kernel to configure the route
 *
 * nw - network
 * gw - gateway
 * hops - number of hops passed down by the user
 * prio - priority of the route
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_route(char *nw, char *gw,
 int hops, int prio,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_ADD_ROUTE
Description:
The LNet Kernel module adds this route to the list of
	existing routes, if one doesn't already exist. If hop parameter is
	not specified (IE: -1) then the hop count is set to 1. If the
	priority parameter is not specified (IE: -1) then the priority is
	set to 0. All routes with the same hop and priority are used in
	round robin. Routes with lower number of hops and/or higher
	priority are preferred. 0 is the highest priority.
If a route already exists the request to add the same route is ignored.
Return Value
-EINVAL: if the network of the route is local
-ENOMEM: if there is no memory
-EHOSTUNREACH: if the host is not on a local network
0: if success

44.2.4. Deleting Routes

/*
 * lustre_lnet_del_route
 * Send down an IOCTL to the kernel to delete a route
 *
 * nw - network
 * gw - gateway
 */
extern int lustre_lnet_del_route(char *nw, char *gw,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_DEL_ROUTE
Description:
LNet will remove the route which matches the network and gateway passed in. If
 no route matches, then the operation fails with an appropriate error number.
Return Value
-ENOENT: if the entry being deleted doesn't exist
0: if success

44.2.5. Showing Routes

/*
 * lustre_lnet_show_route
 * Send down an IOCTL to the kernel to show routes
 * This function will get one route at a time and filter according to
 * provided parameters. If no filter is provided then it will dump all
 * routes that are in the system.
 *
 * nw - network. Optional. Used to filter output
 * gw - gateway. Optional. Used to filter ouptut
 * hops - number of hops passed down by the user
 * Optional. Used to filter output.
 * prio - priority of the route. Optional. Used to filter output.
 * detail - flag to indicate whether detail output is required
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_route(char *nw, char *gw,
 int hops, int prio, int detail,
 int seq_no,
 cYAML **show_rc,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_GET_ROUTE
Description:
The routes are fetched from the kernel one by one and packed
	in a cYAML block, after filtering according to the parameters
	passed in. The cYAML block is then returned to the caller of the
	API.
An example with the detail parameter set to 1
route:
 net: tcp5
 gateway: 192.168.205.130@tcp
 hop: 1.000000
 priority: 0.000000
 state: up
An Example with the detail parameter set to 0
route:
 net: tcp5
 gateway: 192.168.205.130@tcp
Return Value
-ENOMEM: If no memory
0: if success

44.2.6. Adding a Network Interface

/*
 * lustre_lnet_config_net
 * Send down an IOCTL to configure a network.
 *
 * net - the network name
 * intf - the interface of the network of the form net_name(intf)
 * peer_to - peer timeout
 * peer_cr - peer credit
 * peer_buf_cr - peer buffer credits
 * - the above are LND tunable parameters and are optional
 * credits - network interface credits
 * smp - cpu affinity
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_net(char *net,
 char *intf,
 int peer_to,
 int peer_cr,
 int peer_buf_cr,
 int credits,
 char *smp,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_ADD_NET
Description:
A new network is added and initialized. This has the same
	effect as configuring a network from the module parameters. The
	API allows the specification of network parameters such as the
	peer timeout, peer credits, peer buffer credits and credits. The
	CPU affinity of the network interface being added can also be
	specified. These parameters become
	network specific under Dynamic LNet Configuration (DLC), as
	opposed to being per LND as it was previously.
If an already existing network is added the request is ignored.
Return Value
-EINVAL: if the network passed in is not recognized.
-ENOMEM: if no memory
0: success

44.2.7. Deleting a Network Interface

/*
 * lustre_lnet_del_net
 * Send down an IOCTL to delete a network.
 *
 * nw - network to delete.
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_del_net(char *nw,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_DEL_NET
Description:
The network interface specified is deleted. All resources
	associated with this network interface are freed. All routes going
	over that Network Interface are cleaned up.
If a non existent network is deleted then the call return -EINVAL.
Return Value
-EINVAL: if the request references a non-existent network.
0: success

44.2.8. Showing Network Interfaces

/*
 * lustre_lnet_show_net
 * Send down an IOCTL to show networks.
 * This function will use the nw paramter to filter the output. If it's
 * not provided then all networks are listed.
 *
 * nw - network to show. Optional. Used to filter output.
 * detail - flag to indicate if we require detail output.
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_net(char *nw, int detail,
 int seq_no,
 cYAML **show_rc,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_GET_NET
Description:
The network interfaces are queried one at a time from the
	kernel and packed in a cYAML block, after filtering on the network
	(EX: tcp). If the detail field is set to 1, then the tunable
	section of the show block is included in the return.
An example of the detailed output
net:
 nid: 192.168.206.130@tcp4
 status: up
 interfaces:
 intf-0: eth0
 tunables:
 peer_timeout: 10
 peer_credits: 8
 peer_buffer_credits: 30
 credits: 40
An example of none detailed output
net:
 nid: 192.168.206.130@tcp4
 status: up
 interfaces:
 intf-0: eth0
Return Value
-ENOMEM: if no memory to allocate the error or show blocks.
0: success

44.2.9. Adjusting Router Buffer Pools

/*
 * lustre_lnet_config_buf
 * Send down an IOCTL to configure buffer sizes. A value of 0 means
 * default that particular buffer to default size. A value of -1 means
 * leave the value of the buffer unchanged.
 *
 * tiny - tiny buffers
 * small - small buffers
 * large - large buffers.
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_config_buf(int tiny,
 int small,
 int large,
 int seq_no,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_ADD_BUF
Description:
This API is used to configure the tiny, small and large
	router buffers dynamically. These buffers are used to buffer
	messages which are being routed to other nodes. The minimum value
	of these buffers per CPT are:
#define LNET_NRB_TINY_MIN 512
#define LNET_NRB_SMALL_MIN 4096
#define LNET_NRB_LARGE_MIN 256
The default values of these buffers are:
#define LNET_NRB_TINY (LNET_NRB_TINY_MIN * 4)
#define LNET_NRB_SMALL (LNET_NRB_SMALL_MIN * 4)
#define LNET_NRB_LARGE (LNET_NRB_LARGE_MIN * 4)
These default value is divided evenly across all CPTs. However, each CPT can only go
 as low as the minimum.
Multiple calls to this API with the same values has no effect
Return Value
-ENOMEM: if no memory to allocate buffer pools.
0: success

44.2.10. Showing Routing information

/*
 * lustre_lnet_show_routing
 * Send down an IOCTL to dump buffers and routing status
 * This function is used to dump buffers for all CPU partitions.
 *
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] struct cYAML tree describing the error. Freed by caller
 */
extern int lustre_lnet_show_routing(int seq_no, struct cYAML **show_rc,
 struct cYAML **err_rc);

IOCTL to Kernel:
IOC_LIBCFS_GET_BUF
Description:
This API returns a cYAML block describing the values of each of the following per
 CPT:

	The number of pages per buffer. This is a constant.

	The number of allocated buffers. This is a constant.

	The number of buffer credits . This is a real-time value of the number of buffer
 credits currently available. If this value is negative, that indicates the number of
 queued messages.

	The lowest number of credits ever reached in the system. This is historical
 data.

The show block also returns the status of routing, whether enabled, or
 disabled.
An exmaple YAML block
routing:
 - cpt[0]:
 tiny:
 npages: 0
 nbuffers: 2048
 credits: 2048
 mincredits: 2048
 small:
 npages: 1
 nbuffers: 16384
 credits: 16384
 mincredits: 16384
 large:
 npages: 256
 nbuffers: 1024
 credits: 1024
 mincredits: 1024
 - enable: 1
Return Value
-ENOMEM: if no memory to allocate the show or error block.
0: success

44.2.11. Showing LNet Traffic Statistics

/*
 * lustre_lnet_show_stats
 * Shows internal LNet statistics. This is useful to display the
 * current LNet activity, such as number of messages route, etc
 *
 * seq_no - sequence number of the command
 * show_rc - YAML structure of the resultant show
 * err_rc - YAML strucutre of the resultant return code.
 */
extern int lustre_lnet_show_stats(int seq_no, cYAML **show_rc,
 cYAML **err_rc);
IOCTL to Kernel:
IOC_LIBCFS_GET_LNET_STATS
Description:
This API returns a cYAML block describing the LNet traffic
	statistics. Statistics are continuously incremented by LNet while
	it's alive. This API retuns the statistics at the time of the API
	call. The statistics include the following

	Number of messages allocated

	Maximum number of messages in the system

	Errors allocating or sending messages

	Cumulative number of messages sent

	Cumulative number of messages received

	Cumulative number of messages routed

	Cumulative number of messages dropped

	Cumulative number of bytes sent

	Cumulative number of bytes received

	Cumulative number of bytes routed

	Cumulative number of bytes dropped

An exmaple YAML block
statistics:
 msgs_alloc: 0
 msgs_max: 0
 errors: 0
 send_count: 0
 recv_count: 0
 route_count: 0
 drop_count: 0
 send_length: 0
 recv_length: 0
 route_length: 0
 drop_length: 0
Return Value
-ENOMEM: if no memory to allocate the show or error block.
0: success

44.2.12. Adding/Deleting/Showing Parameters through a YAML Block

/*
 * lustre_yaml_config
 * Parses the provided YAML file and then calls the specific APIs
 * to configure the entities identified in the file
 *
 * f - YAML file
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_config(char *f, cYAML **err_rc);

/*
 * lustre_yaml_del
 * Parses the provided YAML file and then calls the specific APIs
 * to delete the entities identified in the file
 *
 * f - YAML file
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_del(char *f, cYAML **err_rc);

/*
 * lustre_yaml_show
 * Parses the provided YAML file and then calls the specific APIs
 * to show the entities identified in the file
 *
 * f - YAML file
 * show_rc - [OUT] The show output in YAML. Must be freed by caller.
 * err_rc - [OUT] cYAML tree describing the error. Freed by caller
 */
extern int lustre_yaml_show(char *f,
 cYAML **show_rc,
 cYAML **err_rc);
IOCTL to Kernel:
Depends on the entity being configured
Description:
These APIs add/remove/show the parameters specified in the
	YAML file respectively. The entities don't have to be uniform.
	Multiple different entities can be added/removed/showed in one
	YAML block.
An example YAML block

net:
 - nid: 192.168.206.132@tcp
 status: up
 interfaces:
 0: eth3
 tunables:
 peer_timeout: 180
 peer_credits: 8
 peer_buffer_credits: 0
 credits: 256
 SMP: "[0]"
route:
 - net: tcp6
 gateway: 192.168.29.1@tcp
 hop: 4
 detail: 1
 seq_no: 3
 - net: tcp7
 gateway: 192.168.28.1@tcp
 hop: 9
 detail: 1
 seq_no: 4
buffer:
 - tiny: 1024
 small: 2000
 large: 512
...
Return Value
Return value will correspond to the return value of the API
	that will be called to operate on the configuration item, as
	described in previous sections

44.2.13. Adding a route code example

int main(int argc, char **argv)
{
	char *network = NULL, *gateway = NULL;
	long int hop = -1, prio = -1;
	struct cYAML *err_rc = NULL;
	int rc, opt;
	optind = 0;

	const char *const short_options = "n:g:c:p:h";
	const struct option long_options[] = {
		{ "net", 1, NULL, 'n' },
		{ "gateway", 1, NULL, 'g' },
		{ "hop-count", 1, NULL, 'c' },
		{ "priority", 1, NULL, 'p' },
		{ "help", 0, NULL, 'h' },
		{ NULL, 0, NULL, 0 },
	};

	while ((opt = getopt_long(argc, argv, short_options,
				 long_options, NULL)) != -1) {
		switch (opt) {
		case 'n':
			network = optarg;
			break;
		case 'g':
			gateway = optarg;
			break;
		case 'c':
			rc = parse_long(optarg, &hop);
			if (rc != 0) {
				/* ignore option */
				hop = -1;
				continue;
			}
			break;
		case 'p':
			rc = parse_long(optarg, &prio);
			if (rc != 0) {
				/* ingore option */
				prio = -1;
				continue;
			}
			break;
		case 'h':
			print_help(route_cmds, "route", "add");
			return 0;
		default:
			return 0;
		}
	}

	rc = lustre_lnet_config_route(network, gateway, hop, prio, -1, &err_rc);

	if (rc != LUSTRE_CFG_RC_NO_ERR)
		cYAML_print_tree2file(stderr, err_rc);

	cYAML_free_tree(err_rc);

	return rc;
}
For other code examples refer to
	
lnet/utils/lnetctl.c

OEBPS/figures/FLR_DelayedWrite.png
Mirror 1 Object j (primary, preferred)

Mirror 2 | Object k (stale) delayed resync

OEBPS/figures/PFL_comp_to_norm.png
0sT4 0sTe 0sT7 0sT0 0sT4 0sT5

OEBPS/figures/PFL_delcomp.png
60 61 62 63

0sT0 0sT1 0SsT2 0sT3 0sT4 0sT5 0sT6 0sT7

OEBPS/figures/PFL_comp_to_comp.png
0STo 0sT3 0sT4 0sTe 0sT7 0sT0

OEBPS/figures/PFL_addcomp.png
60 61 62 63

0sT0 0sT1 0sT2 0sT3 0sT4 0sT5 0sT6 0sT7

OEBPS/figures/PFL_norm_to_comp.png
128K
128K

128K

0sT7 0SsTo 0sT2 0sT3

Before migration

OEBPS/figures/MDTs_Failover.png
MDTO MDT1

MDSO MDS1
Active for MDTO, Active for MDT1,
standby for MDT1 standby for MDTO

OEBPS/figures/HSM_copytool.svg

 image/svg+xml

 Clients

 Lustre world

 HSM world

 OSS

 OSS

 MDS

 HSM protocols

 Coordinator

 Archiving tool

 Archiving tool

 Client

 “

 Agent”

 Client

 “

 Agent”

 Client

 “

 Agent”

 Copy tool

